Construction of Protein Expression Network.

In this post-genomic era, protein network can be used as a complementary way to shed light on the growing amount of data generated from current high-throughput technologies. Protein network is a powerful approach to describe the molecular mechanisms of the biological events through protein-protein interactions. Here, we describe the computational methods used to construct the protein network using expression data. We provide a list of available tools and databases that can be used in constructing the network.

[1]  Gary D. Bader,et al.  clusterMaker: a multi-algorithm clustering plugin for Cytoscape , 2011, BMC Bioinformatics.

[2]  Juancarlos Chan,et al.  Gene Ontology Consortium: going forward , 2014, Nucleic Acids Res..

[3]  Zhiming Liu,et al.  Comprehensive bioinformatics analysis of acquired progesterone resistance in endometrial cancer cell line , 2019, Journal of Translational Medicine.

[4]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[5]  Fausto Spoto,et al.  Finding the shortest path with PesCa: a tool for network reconstruction , 2015, F1000Research.

[6]  Z. Mohamed-Hussein,et al.  Protein–Protein Interaction Network Analysis Reveals Several Diseases Highly Associated with Polycystic Ovarian Syndrome , 2019, International journal of molecular sciences.

[7]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[8]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[9]  Philip Lijnzaad,et al.  The Ensembl genome database project , 2002, Nucleic Acids Res..

[10]  Damian Smedley,et al.  BioMart – biological queries made easy , 2009, BMC Genomics.

[11]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[12]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[13]  Silvio C. E. Tosatto,et al.  InterPro in 2017—beyond protein family and domain annotations , 2016, Nucleic Acids Res..

[14]  Haiyuan Yu,et al.  Detecting overlapping protein complexes in protein-protein interaction networks , 2012, Nature Methods.

[15]  Suzanne M. Paley,et al.  The BioCyc collection of microbial genomes and metabolic pathways , 2019, Briefings Bioinform..

[16]  Gary D. Bader,et al.  GeneMANIA update 2018 , 2018, Nucleic Acids Res..

[17]  M. Jarvelin,et al.  Highly interconnected genes in disease-specific networks are enriched for disease-associated polymorphisms , 2012, Genome Biology.

[18]  Jonathan L. Robinson,et al.  Integrative analysis of human omics data using biomolecular networks. , 2016, Molecular bioSystems.

[19]  The UniProt Consortium,et al.  UniProt: a worldwide hub of protein knowledge , 2018, Nucleic Acids Res..

[20]  A. Alshabi,et al.  Exploring the Molecular Mechanism of the Drug-Treated Breast Cancer Based on Gene Expression Microarray , 2019, Biomolecules.

[21]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[22]  Rafael C. Jimenez,et al.  The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases , 2013, Nucleic Acids Res..

[23]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[24]  Tatiana A. Tatusova,et al.  Gene: a gene-centered information resource at NCBI , 2014, Nucleic Acids Res..

[25]  Xuejun Yang,et al.  Predicting diabetes mellitus genes via protein-protein interaction and protein subcellular localization information , 2016, BMC Genomics.

[26]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[27]  Xing-Ming Zhao,et al.  PPIM : A protein-protein interaction database for Maize 11 12 , 2015 .

[28]  Pornpimol Charoentong,et al.  ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks , 2009, Bioinform..

[29]  Z. Zinati,et al.  Identification of candidate genes related to aroma in rice by analyzing the microarray data of highly aromatic and nonaromatic recombinant inbred line bulks , 2019, BioTechnologia.

[30]  Yi Wang,et al.  AIM: a comprehensive Arabidopsis interactome module database and related interologs in plants , 2014, Database J. Biol. Databases Curation.

[31]  Xiaodong Xu,et al.  Identification of core genes and pathways in type 2 diabetes mellitus by bioinformatics analysis , 2019, Molecular medicine reports.

[32]  Damian Szklarczyk,et al.  The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible , 2016, Nucleic Acids Res..

[33]  Nuno A. Fonseca,et al.  ArrayExpress update – from bulk to single-cell expression data , 2018, Nucleic Acids Res..

[34]  Martin H. Schaefer,et al.  HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks , 2016, Nucleic Acids Res..

[35]  S. Kanaya,et al.  Graph cluster approach in identifying novel proteins and significant pathways involved in polycystic ovary syndrome. , 2019, Reproductive biomedicine online.

[36]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..

[37]  S. Lee,et al.  Comparison of the Antihistaminic Activity Between Cetirizine Enantiomers , 2001 .

[38]  Dmitrij Frishman,et al.  The MIPS mammalian protein?Cprotein interaction database , 2005, Bioinform..

[39]  Xiaoyang Liu,et al.  Microarray Analysis of the Molecular Mechanism Involved in Parkinson's Disease , 2018, Parkinson's disease.

[40]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[41]  Jing Wang,et al.  Identification of key genes and pathways for Alzheimer’s disease via combined analysis of genome-wide expression profiling in the hippocampus , 2019, Biophysics Reports.

[42]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[43]  Tsippi Iny Stein,et al.  The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses , 2016, Current protocols in bioinformatics.

[44]  Yi-Chien Lee,et al.  Temporal self-regulation of transposition through host-independent transposase rodlet formation , 2016, Nucleic acids research.

[45]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[46]  Igor Jurisica,et al.  Integrated interactions database: tissue-specific view of the human and model organism interactomes , 2015, Nucleic Acids Res..

[47]  Alexander R. Pico,et al.  WikiPathways: Pathway Editing for the People , 2008, PLoS biology.

[48]  Mei Zhang,et al.  Co-expression Network Analysis Identifies Four Hub Genes Associated With Prognosis in Soft Tissue Sarcoma , 2019, Front. Genet..

[49]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[50]  Naoaki Ono,et al.  An integrative network-based approach to identify novel disease genes and pathways: a case study in the context of inflammatory bowel disease , 2018, BMC Bioinformatics.