An approach to completing variable names for implicitly typed functional languages
暂无分享,去创建一个
[1] Susumu Katayama. Systematic search for lambda expressions , 2005, Trends in Functional Programming.
[2] Masatomo Hashimoto. First-Class Contexts in ML , 1998, ASIAN.
[3] Rishiyur S. Nikhil,et al. Incremental Polymorphism , 1991, FPCA.
[4] Christian Haack,et al. Type error slicing in implicitly typed higher-order languages , 2004, Sci. Comput. Program..
[5] Robin Milner,et al. Definition of standard ML , 1990 .
[6] Colin Runciman,et al. Retrieving re-usable software components by polymorphic type , 1989, Journal of Functional Programming.
[7] Ruzica Piskac,et al. Code Completion using Quantitative Type Inhabitation , 2011 .
[8] Christian Haack,et al. Type error slicing in implicitly typed higher-order languages , 2003, Sci. Comput. Program..
[9] Romain Robbes,et al. How Program History Can Improve Code Completion , 2008, 2008 23rd IEEE/ACM International Conference on Automated Software Engineering.
[10] Roberto Di Cosmo,et al. Type isomorphisms in a type-assignment framework , 1992, POPL '92.
[11] Mikael Rittri,et al. Using types as search keys in function libraries , 1989, Journal of Functional Programming.
[12] Sumit Gulwani,et al. Type-directed completion of partial expressions , 2012, PLDI.
[13] Joseph E. Stoy. Proceedings of the fourth international conference on Functional programming languages and computer architecture , 1989 .
[14] Umut A. Acar. Self-adjusting computation: (an overview) , 2009, PEPM '09.
[15] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[16] Benjamin C. Pierce,et al. Local type inference , 2000, TOPL.
[17] Dan Grossman,et al. Searching for type-error messages , 2007, PLDI '07.
[18] Andrew K. Wright. Simple imperative polymorphism , 1995, LISP Symb. Comput..
[19] Robin Milner,et al. A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..
[20] John C. Mitchell,et al. Foundations for programming languages , 1996, Foundation of computing series.