Identifying the Orientation of Edge of Graphene Using G band Raman Spectra

The electron-phonon matrix elements relevant to the Raman intensity and Kohn anomaly of the G band are calculated by taking into account the effect of the edge of graphene. The analysis of the pseudospin reveals that the longitudinal optical phonon mode undergoes a strong Kohn anomaly for both the armchair and zigzag edges, and that only the longitudinal (transverse) optical phonon mode is a Raman active mode near the armchair (zigzag) edge. The Raman intensity is enhanced when the polarization of the incident laser light is parallel (perpendicular) to the armchair (zigzag) edge. This asymmetry between the armchair and zigzag edges is useful in identifying the orientation of the edge of graphene.

[1]  T. Ohta,et al.  Quasiparticle dynamics in graphene , 2007 .

[2]  S. Reich,et al.  Phonon softening in individual metallic carbon nanotubes due to the Kohn Anomaly. , 2007, Physical review letters.

[3]  S. Murakami,et al.  Gauge Field for Edge State in Graphene , 2006, cond-mat/0602647.

[4]  R. Saito,et al.  Pseudospin and Deformation-Induced Gauge Field in Graphene(Interaction and Nanostructural Effects in Low-Dimensional Systems) , 2008, 0810.4192.

[5]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[6]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[7]  Yousuke Kobayashi,et al.  Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy , 2005 .

[8]  Francesco Mauri,et al.  Kohn anomalies and electron-phonon interactions in graphite. , 2004, Physical review letters.

[9]  Y. Kawazoe,et al.  Local Energy Gap in Deformed Carbon Nanotubes , 2004, cond-mat/0401317.

[10]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[11]  Riichiro Saito,et al.  Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes , 2003 .

[12]  K. Novoselov,et al.  Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. , 2007, Nature materials.

[13]  G. Kresse,et al.  Phonon softening in metallic nanotubes by a Peierls-like mechanism. , 2002, Physical review letters.

[14]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[15]  K. Kusakabe,et al.  Peculiar Localized State at Zigzag Graphite Edge , 1996 .

[16]  T. Ando,et al.  Optical Phonon Interacting with Electrons in Carbon Nanotubes(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2006 .

[17]  Jie Jiang,et al.  Electron-phonon matrix elements in single-wall carbon nanotubes , 2005 .

[18]  T. Ando Anomaly of Optical Phonon in Monolayer Graphene , 2006 .

[19]  M. Lazzeri,et al.  Nonadiabatic Kohn anomaly in a doped graphene monolayer. , 2006, Physical review letters.

[20]  K. Novoselov,et al.  Raman spectroscopy of graphene edges. , 2008, Nano letters.

[21]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[22]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[23]  P. Kim,et al.  Electric field effect tuning of electron-phonon coupling in graphene. , 2006, Physical review letters.

[24]  M. Calandra,et al.  Giant nonadiabatic effects in layer metals: raman spectra of intercalated graphite explained. , 2008, Physical review letters.

[25]  M. Katsnelson,et al.  Electron scattering on microscopic corrugations in graphene , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[27]  J. Tour,et al.  Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons , 2009, Nature.

[28]  M. Dresselhaus,et al.  Curvature-induced optical phonon frequency shift in metallic carbon nanotubes , 2008, 0803.3847.

[29]  W. Kohn Image of the Fermi Surface in the Vibration Spectrum of a Metal , 1959 .

[30]  Shuichi Murakami,et al.  Kohn anomalies in graphene nanoribbons , 2009, 0907.2475.

[31]  G. Medeiros-Ribeiro,et al.  Anisotropy of the Raman spectra of nanographite ribbons. , 2004, Physical review letters.