αI-spectrin represents evolutionary optimization of spectrin for red blood cell deformability

[1]  M. Faivre,et al.  Impact of surface-area-to-volume ratio, internal viscosity and membrane viscoelasticity on red blood cell deformability measured in isotonic condition , 2019, Scientific Reports.

[2]  G. Karniadakis,et al.  Cytoskeleton Remodeling Induces Membrane Stiffness and Stability Changes of Maturing Reticulocytes. , 2018, Biophysical journal.

[3]  Thomas G. Fai,et al.  Image-based model of the spectrin cytoskeleton for red blood cell simulation , 2017, PLoS Comput. Biol..

[4]  H. Meiselman,et al.  Prediction of the level and duration of shear stress exposure that induces subhemolytic damage to erythrocytes. , 2017, Biorheology.

[5]  Thomas L. Dunwell,et al.  New genes from old: asymmetric divergence of gene duplicates and the evolution of development , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  Ronald Rice,et al.  Mechanics of the Cell , 2016 .

[7]  Samuel E. Lux,et al.  Anatomy of the red cell membrane skeleton: unanswered questions. , 2016, Blood.

[8]  Jennifer C. Lee,et al.  Mechanism of Assembly of the Non-Covalent Spectrin Tetramerization Domain from Intrinsically Disordered Partners , 2013, Journal of molecular biology.

[9]  M. Socol,et al.  Full dynamics of a red blood cell in shear flow , 2012, Proceedings of the National Academy of Sciences.

[10]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[11]  Jeffrey D Fortman,et al.  Effects of weekly blood collection in C57BL/6 mice. , 2011, Journal of the American Association for Laboratory Animal Science : JAALAS.

[12]  N. Burton,et al.  Modelling the structure of the red cell membrane. , 2011, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[13]  O. Baskurt,et al.  Parameterization of red blood cell elongation index – shear stress curves obtained by ektacytometry , 2009, Scandinavian journal of clinical and laboratory investigation.

[14]  N. Mohandas,et al.  Red cell membrane: past, present, and future. , 2008, Blood.

[15]  H T Low,et al.  Tank-treading, swinging, and tumbling of liquid-filled elastic capsules in shear flow. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  N. Mohandas,et al.  Targeted deletion of alpha-adducin results in absent beta- and gamma-adducin, compensated hemolytic anemia, and lethal hydrocephalus in mice. , 2007, Blood.

[17]  M. Faivre,et al.  Swinging of red blood cells under shear flow. , 2007, Physical review letters.

[18]  T. Secomb,et al.  Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. , 2006, Physical review letters.

[19]  N. Mohandas,et al.  Mammalian alpha I-spectrin is a neofunctionalized polypeptide adapted to small highly deformable erythrocytes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Jianzhi Zhang,et al.  Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution , 2005, Genetics.

[21]  Stefan Eber,et al.  Hereditary spherocytosis--defects in proteins that connect the membrane skeleton to the lipid bilayer. , 2004, Seminars in hematology.

[22]  P. Bignone,et al.  Spectrin alpha II and beta II isoforms interact with high affinity at the tetramerization site. , 2003, The Biochemical journal.

[23]  N. Mohandas,et al.  Shear-Response of the Spectrin Dimer-Tetramer Equilibrium in the Red Blood Cell Membrane* , 2002, The Journal of Biological Chemistry.

[24]  A. Baines,et al.  Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. , 2001, Physiological reviews.

[25]  D. Boal,et al.  Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. , 1998, Biophysical journal.

[26]  D. Branton,et al.  Motifs involved in interchain binding at the tail-end of spectrin. , 1998, Biochimica et biophysica acta.

[27]  M. Morris,et al.  Comparison of the salt-dependent self-association of brain and erythroid spectrin. , 1997, Biochemistry.

[28]  S Chien,et al.  Influence of network topology on the elasticity of the red blood cell membrane skeleton. , 1997, Biophysical journal.

[29]  D. Discher,et al.  Kinematics of red cell aspiration by fluorescence-imaged microdeformation. , 1996, Biophysical journal.

[30]  N. Mohandas,et al.  Red cell abnormalities in hereditary spherocytosis: relevance to diagnosis and understanding of the variable expression of clinical severity. , 1996, The Journal of laboratory and clinical medicine.

[31]  D. Speicher,et al.  Mapping the Human Erythrocyte -Spectrin Dimer Initiation Site Using Recombinant Peptides and Correlation of Its Phasing with the -Actinin Dimer Site (*) , 1996, Journal of Biological Chemistry.

[32]  E. Evans,et al.  Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. , 1994, Science.

[33]  D. Branton,et al.  Crystal structure of the repetitive segments of spectrin. , 1993, Science.

[34]  R. Waugh,et al.  Electric fields induce reversible changes in the surface to volume ratio of micropipette-aspirated erythrocytes. , 1990, Biophysical journal.

[35]  R. Waugh,et al.  Alterations of the apparent area expansivity modulus of red blood cell membrane by electric fields. , 1990, Biophysical journal.

[36]  P. Agre,et al.  Decreased membrane mechanical stability and in vivo loss of surface area reflect spectrin deficiencies in hereditary spherocytosis. , 1988, The Journal of clinical investigation.

[37]  W. Gratzer,et al.  Analysis of the self-association of human red cell spectrin. , 1986, Biochemistry.

[38]  J. Morrow,et al.  Mechanism of cytoskeletal regulation (I): functional differences correlate with antigenic dissimilarity in human brain and erythrocyte spectrin. , 1985, Biochimica et biophysica acta.

[39]  D. Speicher,et al.  Structure of human erythrocyte spectrin. II. The sequence of the alpha-I domain. , 1983, The Journal of biological chemistry.

[40]  J. Prchal,et al.  Altered spectrin dimer-dimer association and instability of erythrocyte membrane skeletons in hereditary pyropoikilocytosis. , 1981, The Journal of clinical investigation.

[41]  K. John,et al.  Elliptical erythrocyte membrane skeletons and heat-sensitive spectrin in hereditary elliptocytosis. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[42]  W Groner,et al.  New optical technique for measuring erythrocyte deformability with the ektacytometer. , 1980, Clinical chemistry.

[43]  E. Ungewickell,et al.  Self-association of human spectrin. A thermodynamic and kinetic study. , 1978, European journal of biochemistry.

[44]  Marcel Bessis,et al.  Blood Smears Reinterpreted , 1977, Springer Berlin Heidelberg.

[45]  N. Mohandas,et al.  Red Cell Structure, Shapes and Deformability , 1975 .

[46]  N. Mohandas,et al.  A Congenital Haemolytic Anaemia with Thermal Sensitivity of the Erythrocyte Membrane , 1975, British journal of haematology.

[47]  F. C. Macintosh,et al.  Flow behaviour of erythrocytes - I. Rotation and deformation in dilute suspensions , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[48]  D. Danon A rapid micro method for recording red cell osmotic fragility by continuous decrease of salt concentration , 1963, Journal of clinical pathology.

[49]  J. Gregg,et al.  THE OSMOTIC RESISTANCE (FRAGILITY) OF HUMAN RED CELLS. , 1947, The Journal of clinical investigation.

[50]  W E Cooke,et al.  THE STRUCTURE OF THE HUMAN ERYTHROCYTE , 1930, British medical journal.

[51]  J. Acker,et al.  Eadie-Hofstee analysis of red blood cell deformability. , 2011, Clinical hemorheology and microcirculation.

[52]  A. Saraya,et al.  Red cell membrane disorders. , 1994, The Journal of the Association of Physicians of India.

[53]  J. Rowley,et al.  Association of red cell spherocytosis with deletion of the short arm of chromosome 8. , 1987, Blood.

[54]  T. Coetzer,et al.  Spectrin tetramer-dimer equilibrium in hereditary elliptocytosis. , 1982, Blood.

[55]  E. Kimura,et al.  Coil planet centrifugal and capillary tube centrifugal analysis of factors regulating erythrocyte osmotic fragility and deformability. , 1982, The Japanese journal of physiology.