Coupling of MoS_{2} Excitons with Lattice Phonons and Cavity Vibrational Phonons in Hybrid Nanobeam Cavities.

We report resonant Raman spectroscopy of neutral excitons X^{0} and intravalley trions X^{-} in hBN-encapsulated MoS_{2} monolayer embedded in a nanobeam cavity. By temperature tuning the detuning between Raman modes of MoS_{2} lattice phonons and X^{0}/X^{-} emission peaks, we probe the mutual coupling of excitons, lattice phonons and cavity vibrational phonons. We observe an enhancement of X^{0}-induced Raman scattering and a suppression for X^{-}-induced, and explain our findings as arising from the tripartite exciton-phonon-phonon coupling. The cavity vibrational phonons provide intermediate replica states of X^{0} for resonance conditions in the scattering of lattice phonons, thus enhancing the Raman intensity. In contrast, the tripartite coupling involving X^{-} is found to be much weaker, an observation explained by the geometry-dependent polarity of the electron and hole deformation potentials. Our results indicate that phononic hybridization between lattice and nanomechanical modes plays a key role in the excitonic photophysics and light-matter interaction in 2D-material nanophotonic systems.

[1]  M. Poot,et al.  Geometric Tuning of Stress in Predisplaced Silicon Nitride Resonators. , 2022, Nano letters.

[2]  Kenji Watanabe,et al.  A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler , 2022, Light, science & applications.

[3]  C. Schneider,et al.  Hybridized Exciton-Photon-Phonon States in a Transition Metal Dichalcogenide van der Waals Heterostructure Microcavity. , 2022, Physical review letters.

[4]  M. Helm,et al.  Unveiling the Zero-Phonon Line of the Boron Vacancy Center by Cavity-Enhanced Emission. , 2022, Nano letters.

[5]  T. Taniguchi,et al.  Trions in MoS2 are quantum superpositions of intra- and intervalley spin states , 2021, Physical Review B.

[6]  Kenji Watanabe,et al.  Nonlocal Exciton-Photon Interactions in Hybrid High-Q Beam Nanocavities with Encapsulated MoS_{2} Monolayers. , 2021, Physical review letters.

[7]  S. Ferguson,et al.  Non-linear mechanical properties and dynamic response of silicon nitride bioceramic , 2021, Ceramics International.

[8]  N. Gedik,et al.  Phonoritons as Hybridized Exciton-Photon-Phonon Excitations in a Monolayer h-BN Optical Cavity. , 2021, Physical review letters.

[9]  L. Seravalli,et al.  Enhancement of Raman Scattering and Exciton/Trion Photoluminescence of Monolayer and Few-Layer MoS2 by Ag Nanoprisms and Nanoparticles: Shape and Size Effects , 2021 .

[10]  P. Chou,et al.  Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling , 2020 .

[11]  Kenji Watanabe,et al.  Versatile construction of van der Waals heterostructures using a dual-function polymeric film , 2020, Nature Communications.

[12]  U. Woggon,et al.  High phonon-limited mobility of charged and neutral excitons in mono- and bilayer MoTe2 , 2020, 2004.14202.

[13]  A. Majumdar,et al.  Exciton–phonon interactions in nanocavity-integrated monolayer transition metal dichalcogenides , 2020, npj 2D Materials and Applications.

[14]  Jiaqiang Yan,et al.  Valley phonons and exciton complexes in a monolayer semiconductor , 2020, Nature Communications.

[15]  K. Bolotin,et al.  Giant Tunable Mechanical Nonlinearity in Graphene-Silicon Nitride Hybrid Resonator. , 2019, Nano letters.

[16]  Weigen Chen,et al.  A review of cavity-enhanced Raman spectroscopy as a gas sensing method , 2020, Applied Spectroscopy Reviews.

[17]  P. Tan,et al.  The intrinsic temperature-dependent Raman spectra of graphite in the temperature range from 4K to 1000K , 2019, Carbon.

[18]  Timothy C. Berkelbach,et al.  Dielectric disorder in two-dimensional materials , 2019, Nature Nanotechnology.

[19]  C. Fantini,et al.  Double resonance Raman scattering process in 2D materials , 2019, Journal of Materials Research.

[20]  A. Bruchhausen,et al.  The lifetime of interlayer breathing modes of few-layer 2H-MoSe2 membranes. , 2019, Nanoscale.

[21]  J. Aizpurua,et al.  Quantum description of surface-enhanced resonant Raman scattering within a hybrid-optomechanical model , 2019, Physical Review A.

[22]  M. Rafiq,et al.  Many-body effect of mesoscopic localized states in MoS2 monolayer , 2019, Physical Review Materials.

[23]  K. Majumdar,et al.  Fundamental exciton linewidth broadening in monolayer transition metal dichalcogenides , 2019, Physical Review B.

[24]  A. Högele,et al.  Tuning the Fröhlich exciton-phonon scattering in monolayer MoS2 , 2018, Nature Communications.

[25]  Aaron M. Jones,et al.  Virtual Trions in the Photoluminescence of Monolayer Transition-Metal Dichalcogenides. , 2018, Physical review letters.

[26]  Johannes E. Fröch,et al.  Photonic Nanostructures from Hexagonal Boron Nitride , 2018, Advanced Optical Materials.

[27]  P. Erhart,et al.  Impact of strain on the excitonic linewidth in transition metal dichalcogenides , 2018, 2D Materials.

[28]  P. Ajayan,et al.  Intrinsic coherence time of trions in monolayer MoSe 2 measured via two-dimensional coherent spectroscopy , 2018 .

[29]  G. Cheng,et al.  Straining effects in MoS2 monolayer on nanostructured substrates: temperature-dependent photoluminescence and exciton dynamics. , 2018, Nanoscale.

[30]  Kenji Watanabe,et al.  Photonic crystal cavities from hexagonal boron nitride , 2018, Nature Communications.

[31]  A. Knorr,et al.  Mapping of the dark exciton landscape in transition metal dichalcogenides , 2017, Physical Review B.

[32]  E. Laird,et al.  Displacemon electromechanics: how to detect quantum interference in a nanomechanical resonator , 2017, 1710.01920.

[33]  Y. Gong,et al.  Local strain-induced band gap fluctuations and exciton localization in aged WS 2 monolayers , 2017 .

[34]  M. Molas,et al.  Raman scattering excitation spectroscopy of monolayer WS2 , 2017, Scientific Reports.

[35]  M. Terrones,et al.  Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy , 2017, Nature Communications.

[36]  M. Ozkan,et al.  Strain Gated Bilayer Molybdenum Disulfide Field Effect Transistor with Edge Contacts , 2017, Scientific Reports.

[37]  C. Robert,et al.  Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures , 2017, 1702.00323.

[38]  R Saito,et al.  Raman spectroscopy of transition metal dichalcogenides , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  A. Knorr,et al.  Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides , 2016, Nature Communications.

[40]  Bjarke S. Jessen,et al.  The hot pick-up technique for batch assembly of van der Waals heterostructures , 2016, Nature communications.

[41]  D J Hilton,et al.  Optical Coherence in Atomic-Monolayer Transition-Metal Dichalcogenides Limited by Electron-Phonon Interactions. , 2016, Physical review letters.

[42]  Aaron M. Jones,et al.  Excitonic luminescence upconversion in a two-dimensional semiconductor , 2015, Nature Physics.

[43]  T. Fujisawa,et al.  Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity , 2015, Scientific Reports.

[44]  Martin Heiss,et al.  Quantum dot opto-mechanics in a fully self-assembled nanowire. , 2014, Nano letters.

[45]  H. Zeng,et al.  Resonance Raman scattering in bulk 2H-MX2 (M = Mo, W; X = S, Se) and monolayer MoS2 , 2014 .

[46]  Yong-Wei Zhang,et al.  Polarity-reversed robust carrier mobility in monolayer MoS₂ nanoribbons. , 2013, Journal of the American Chemical Society.

[47]  Michael Hippler,et al.  Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy. , 2012, The Analyst.

[48]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[49]  M. Dresselhaus,et al.  Quantum Description of Raman Scattering , 2011 .

[50]  F. Morier-Genoud,et al.  Dynamics of Trion formation in InxGa1-xAs quantum wells. , 2009, Physical review letters.

[51]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[52]  P. Etchegoin,et al.  Vibrational pumping and heating under SERS conditions: fact or myth? , 2006, Faraday discussions.

[53]  L. Marsal,et al.  Acoustic phonon broadening mechanism in single quantum dot emission , 2001 .

[54]  E. L. Ameziane,et al.  Deformation potentials of the direct and indirect absorption edges of GaP , 1979 .