A new multiscale finite element method for the 2D transient Navier–Stokes equations

ABSTRACT A new multiscale finite element method for the two-dimensional (2D) transient Navier–Stokes equations is proposed in this paper. This new method is based on multiscale enrichment with the lowest equal-order finite element pair . Under certain regularity assumptions, the optimal error estimates in -norm for velocity and -norm for pressure are obtained. Especially, via applying a new dual problem for the transient Navier–Stokes problem and some techniques in the proof process, we establish the convergence of the optimal order in -norm for the velocity. Finally, a numerical example confirms our theory analysis and validates the high effectiveness of this new method.

[1]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[2]  Yinnian He,et al.  A stabilized finite element method based on local polynomial pressure projection for the stationary Navier--Stokes equations , 2008 .

[3]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[4]  Frédéric Valentin,et al.  Convergence Analysis of a Residual Local Projection Finite Element Method for the Navier-Stokes Equations , 2012, SIAM J. Numer. Anal..

[5]  Zhihao Ge,et al.  Analysis of multiscale finite element method for the stationary Navier–Stokes equations , 2012 .

[6]  Yinnian He,et al.  Convergence analysis of a new multiscale finite element method for the stationary Navier-Stokes problem , 2014, Comput. Math. Appl..

[7]  Lutz Tobiska,et al.  Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations , 1996 .

[8]  Frédéric Valentin,et al.  Stabilized Finite Element Methods Based on Multiscale Enrichment for the Stokes Problem , 2006, SIAM J. Numer. Anal..

[9]  Endre Süli,et al.  Approximation of the global attractor for the incompressible Navier–Stokes equations , 2000 .

[10]  Franco Brezzi,et al.  Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) , 1993 .

[11]  Yinnian He,et al.  A stabilized finite element method based on two local Gauss integrations for the Stokes equations , 2008 .

[12]  Yinnian He,et al.  A new stabilized finite element method for the transient Navier-Stokes equations , 2007 .

[13]  Frédéric Valentin,et al.  Towards multiscale functions : enriching finite element spaces with local but not bubble-like functions , 2005 .

[14]  J. P. Benque,et al.  A finite element method for Navier-Stokes equations , 1980 .

[15]  Frédéric Valentin,et al.  Consistent Local Projection Stabilized Finite Element Methods , 2010, SIAM J. Numer. Anal..

[16]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[17]  Hantaek Bae Navier-Stokes equations , 1992 .

[18]  G. Burton Sobolev Spaces , 2013 .

[19]  Yinnian He,et al.  Convergence analysis of a new multiscale finite element method with the P1/P0 element for the incompressible flow , 2013 .

[20]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[21]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[22]  Jie Shen,et al.  On error estimates of the penalty method for unsteady Navier-Stokes equations , 1995 .

[23]  Jean-Michel Ghidaglia,et al.  Attractors for the penalized Navier-Stokes equations , 1988 .

[24]  Alessandro Russo,et al.  Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations , 1996 .