Discrimination of Positive/Negative Attitude Using Optical Flow and Prosody Information

[1]  Shan He,et al.  Spontaneous Facial Expression Recognition by Fusing Thermal Infrared and Visible Images , 2012, IAS.

[2]  Shang-Hong Lai,et al.  Learning spatial weighting for facial expression analysis via constrained quadratic programming , 2013, Pattern Recognit..

[3]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[4]  Fadi Dornaika,et al.  Improving dynamic facial expression recognition with feature subset selection , 2011, Pattern Recognit. Lett..

[5]  Jake K. Aggarwal,et al.  Spontaneous facial expression recognition: A robust metric learning approach , 2014, Pattern Recognit..

[6]  Alberto Del Bimbo,et al.  3D facial expression recognition using SIFT descriptors of automatically detected keypoints , 2011, The Visual Computer.

[7]  Hiromitsu Hattori,et al.  Learning From Humans: Agent Modeling With Individual Human Behaviors , 2011, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[8]  Xiaoyue Jiang,et al.  Extracting Local Binary Patterns from Image Key Points: Application to Automatic Facial Expression Recognition , 2013, SCIA.

[9]  Larry S. Davis,et al.  Recognizing Human Facial Expressions From Long Image Sequences Using Optical Flow , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Gamini Dissanayake,et al.  Optical flow based analyses to detect emotion from human facial image data , 2010, Expert Syst. Appl..

[11]  Luc Van Gool,et al.  Hough Forest-Based Facial Expression Recognition from Video Sequences , 2010, ECCV Workshops.

[12]  Richard Bowden,et al.  Local binary patterns for multi-view facial expression recognition , 2011 .