Effective thermal conductivity of ultra-high temperature ceramics with thermal contact resistance

A model of effective thermal conductivity is established by combining the previous model of effective thermal conductivity of gas–solid composite materials and approximately effective medium theory. Based on the previous model of single idealized contact, the thermal contact resistance between the particles is considered. The study shows that the effective thermal conductivity predicted by the new model, which considers the thermal contact resistance, agrees well with the experimental data. However, the deviation of original predictions from the experimental data is rather large for the case of high porosity. The new model is applied to the effective thermal conductivity of ultra-high temperature ceramics. The predictions agree well with the experimental data.

[1]  David S. Smith,et al.  Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent , 2009 .

[2]  Sylvia M. Johnson,et al.  Thermal Conductivity Characterization of Hafnium Diboride‐Based Ultra‐High‐Temperature Ceramics , 2008 .

[3]  J. Ferreira,et al.  Microstructure and thermal conductivity of porous ZrO2 ceramics , 2007 .

[4]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[5]  Raffaele Savino,et al.  Aerothermodynamic study of UHTC-based thermal protection systems , 2005 .

[6]  C. Baudín,et al.  Improvement in the thermal shock resistance of alumina through the addition of submicron-sized aluminium nitride particles , 2004 .

[7]  G. Bai,et al.  Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia , 2002 .

[8]  Xin-gang Liang,et al.  Effective thermal conductivity of gas–solid composite materials and the temperature difference effect at high temperature , 1999 .

[9]  Ramvir Singh,et al.  Thermal conduction in two-phase materials with spherical and non-spherical inclusions , 1991 .

[10]  D. Hasselman,et al.  Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance , 1987 .

[11]  M. Cooper,et al.  Thermal contact conductance , 1969 .

[12]  A. Brailsford,et al.  The thermal conductivity of aggregates of several phases, including porous materials , 1964 .

[13]  T. Vasilos,et al.  Thermal Conductivity: X, Data for Several Pure Oxide Materials Corrected to Zero Porosity , 1954 .

[14]  J. Francl,et al.  Thermal Conductivity: IX, Experimental Investigation of Effect of Porosity on Thermal Conductivity , 1954 .

[15]  W. Pabst,et al.  Porosity and pore size control in starch consolidation casting of oxide ceramics- : Achievements and problems , 2007 .

[16]  W. Pabst,et al.  Characterization of different starch types for their application in ceramic processing , 2006 .

[17]  Erica L. Corral,et al.  Ultra High Temperature Ceramics for Hypersonic Vehicle Applications , 2006 .

[18]  Rainer Telle,et al.  Thermal Resistance of Grain Boundaries in Alumina Ceramics and Refractories , 2003 .

[19]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[20]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. II. Dielektrizitätskonstanten und Leitfähigkeiten von Vielkristallen der nichtregulären Systeme , 1936 .

[21]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .