An improved combination feature selection based on ReliefF and genetic algorithm

Feature selection is a hot topic in current information science, especially in the field of pattern recognition. In this paper, a combination feature selection Algorithm, ReGA, which merges the feature selection technique, ReliefF, into Genetic Algorithms Method, is presented. Experiments show that the new method improves the fitness of initial population, it can find the optimal solution more quickly, and improve the efficiency of SGA.

[1]  Jack Sklansky,et al.  A note on genetic algorithms for large-scale feature selection , 1989, Pattern Recognit. Lett..

[2]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[3]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[4]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[5]  Jihoon Yang,et al.  Feature Subset Selection Using a Genetic Algorithm , 1998, IEEE Intell. Syst..

[6]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[7]  Alexey Tsymbal,et al.  Advanced local feature selection in medical diagnostics , 2000, Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000.

[8]  M.J. Martin-Bautista,et al.  A survey of genetic feature selection in mining issues , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[9]  Michael S. Lew,et al.  Principles of Visual Information Retrieval , 2001, Advances in Pattern Recognition.

[10]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.