Linearized Analysis of Inertial Navigation Employing Common Frame Error Representations

This paper expands upon previous work that explores a new paradigm for inertial navigation systems. Errors in filter applications using inertial navigation system equations have been previously defined from an abstract vector point-of-view. For example, the error in velocity has always been expressed using a straight difference of the truth minus the estimate without regard to each of the vector’s frame representations. In previous work an alternative vector state-error is defined using common coordinates over all vector error realizations, thereby providing a true-to-life representation of the actual errors. A modified extended Kalman filter was derived that employs the alternative vector state error representation. Here a linearized analysis of the new error equations is conducted to determine effects on INS performance. Schuler and Foucault frequencies are calculated using a stationary analysis.

[1]  John L. Crassidis Sigma-point Kalman filtering for integrated GPS and inertial navigation , 2006 .

[2]  Paul G. Savage,et al.  Blazing Gyros: The Evolution of Strapdown Inertial Navigation Technology for Aircraft , 2013 .

[3]  J. Stuelpnagel On the Parametrization of the Three-Dimensional Rotation Group , 1964 .

[4]  John L. Crassidis,et al.  Inertial Navigation Employing Common Frame Error Representations , 2017 .

[5]  Yang Cheng,et al.  Particle Filtering for Attitude Estimation Using a Minimal Local-Error Representation , 2009 .

[6]  John L. Crassidis,et al.  Fundamentals of Spacecraft Attitude Determination and Control , 2014 .

[7]  K. C. Daly,et al.  Star-Sensor-Based Satellite Attitude/Attitude Rate Estimator , 1985 .

[8]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[9]  Malcolm D. Shuster Survey of attitude representations , 1993 .

[10]  Yuanxin Wu,et al.  INS/GPS Integration: Global Observability Analysis , 2009, IEEE Trans. Veh. Technol..

[11]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[12]  Jeff Smith,et al.  Autonomous Underwater Vehicle Navigation , 1995 .

[13]  M. Shuster A survey of attitude representation , 1993 .

[14]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[15]  Hugh F. Durrant-Whyte,et al.  Inertial navigation systems for mobile robots , 1995, IEEE Trans. Robotics Autom..

[16]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[17]  John L. Crassidis,et al.  Attitude Estimation Employing Common Frame Error Representations , 2015 .

[18]  I. Sofair,et al.  Improved Method for Calculating Exact Geodetic Latitude and Altitude Revisited , 2000 .

[19]  W. Wrigley History of Inertial Navigation , 1977 .

[20]  Mohinder S Grewal,et al.  Applications of Kalman Filtering in Aerospace 1960 to the Present [Historical Perspectives] , 2010, IEEE Control Systems.

[21]  Sergei Tanygin,et al.  Projective Geometry of Attitude Parameterizations with Applications to Control , 2013 .