Real-time fault-tolerance with hot-standby topology for conditional sum adder

Abstract This paper presents the design philosophy of a fault tolerant conditional sum adder that uses hot-standby technique, which is an online swapping process of faulty components of a circuit by fault-free spares without interrupting the normal operation of the system. We have used dynamic recovery scheme in fault detection and correction and made the method efficient in terms of area and test complexity compared to the existing approaches. The adder here is sliced into smaller sub-modules for ease of testing and one hot spare is used for reconfiguration purpose. Number of test vectors in the proposed technology is independent of the word-length and due to cascadable nature of the design, we can increase the word-length while tolerating multiple faults.

[1]  Harish M. Kittur,et al.  Energy Efficient Low Area Error Tolerant Adder with Higher Accuracy , 2014, Circuits Syst. Signal Process..

[2]  Lorena Anghel,et al.  Defects Tolerant Logic Gates for Unreliable Future Nanotechnologies , 2007, IWANN.

[3]  Earl E. Swartzlander,et al.  Quadruple time redundancy adders [error correcting adder] , 2003, Proceedings 18th IEEE Symposium on Defect and Fault Tolerance in VLSI Systems.

[4]  Jianbo Gao,et al.  Toward hardware-redundant, fault-tolerant logic for nanoelectronics , 2005, IEEE Design & Test of Computers.

[5]  Rolf Drechsler,et al.  On the generation of area-time optimal testable adders , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Y. Bentoutou A real time low complexity codec for use in low Earth orbit small satellite missions , 2006 .

[7]  Mengu Cho,et al.  Reconfigurable fault tolerant avionics system , 2013, 2013 IEEE Aerospace Conference.

[8]  H. Howie Huang,et al.  Exploring Dynamic Redundancy to Resuscitate Faulty PCM Blocks , 2014, JETC.

[9]  Amirali Baniasadi,et al.  FARHAD: A Fault-Tolerant Power-Aware Hybrid Adder for add intensive applications , 2013, 2013 IEEE 24th International Conference on Application-Specific Systems, Architectures and Processors.

[10]  Marco Benedetti,et al.  A performance-driven QBF-based iterative logic array representation with applications to verification, debug and test , 2007, ICCAD 2007.

[11]  Kaushik Roy,et al.  Novel Low Overhead Post-Silicon Self-Correction Technique for Parallel Prefix Adders Using Selective Redundancy and Adaptive Clocking , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[12]  Anindya Sundar Dhar,et al.  Design of a Fault-Tolerant Conditional Sum Adder , 2012, VDAT.

[13]  Niraj K. Jha,et al.  Design and synthesis of self-checking VLSI circuits , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Jin-Fu Li,et al.  Efficient testing methodologies for conditional sum adders , 2004, 13th Asian Test Symposium.

[15]  Janusz Biernat Fast fault-tolerant adders , 2010, Int. J. Crit. Comput. Based Syst..

[16]  Alexander Miczo,et al.  Digital logic testing and simulation , 1986 .

[17]  Lirida A. B. Naviner,et al.  Progressive module redundancy for fault-tolerant designs in nanoelectronics , 2011, Microelectron. Reliab..

[18]  J. Teifel,et al.  Self-Voting Dual-Modular-Redundancy Circuits for Single-Event-Transient Mitigation , 2008, IEEE Transactions on Nuclear Science.

[19]  Jack Sklansky,et al.  Conditional-Sum Addition Logic , 1960, IRE Trans. Electron. Comput..

[20]  C. D. Martinez,et al.  A fault tolerant parallel-prefix adder for VLSI and FPGA design , 2012, Proceedings of the 2012 44th Southeastern Symposium on System Theory (SSST).

[21]  Muhammad Mahbubur Rahman,et al.  Fault tolerant reversible logic synthesis: Carry look-ahead and carry-skip adders , 2009, 2009 International Conference on Advances in Computational Tools for Engineering Applications.

[22]  Jack Sklansky An Evaluation of Several Two-Summand Binary Adders , 1960, IRE Trans. Electron. Comput..

[23]  Bernd Becker Efficient Testing of Optimal Time Adders , 1988, IEEE Trans. Computers.

[24]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[25]  Shyue-Kung Lu,et al.  C-testable design techniques for iterative logic arrays , 1995, IEEE Trans. Very Large Scale Integr. Syst..

[26]  Zhou,et al.  Fault Tolerant Reconfigurable System with Dual-Module Redundancy and Dynamic Reconfiguration , 2011 .

[27]  Hao Chen,et al.  Stochastic computational models for accurate reliability evaluation of logic circuits , 2010, GLSVLSI '10.

[28]  Robert E. Lyons,et al.  The Use of Triple-Modular Redundancy to Improve Computer Reliability , 1962, IBM J. Res. Dev..

[29]  Jeong-A Lee,et al.  Self-repairing adder using fault localization , 2014, Microelectron. Reliab..

[30]  Hassan Salarieh,et al.  Design of a fault tolerated intelligent control system for a nuclear reactor power control: Using extended Kalman filter , 2014 .