Attacking the Quantum Internet

The main service provided by the coming quantum Internet will be creating entanglement between any two quantum nodes. We discuss and classify attacks on quantum repeaters, which will serve roles similar to those of classical Internet routers. We have modeled the components for and structure of quantum repeater network nodes. With this model, we point out attack vectors, then analyze attacks in terms of confidentiality, integrity, and availability. While we are reassured about the promises of quantum networks from the confidentiality point of view, integrity and availability present new vulnerabilities not present in classical networks and require care to handle properly. We observe that the requirements on the classical computing/networking elements affect the systems’ overall security risks. This component-based analysis establishes a framework for further investigation of network-wide vulnerabilities.

[1]  Craig Gentry,et al.  Computing arbitrary functions of encrypted data , 2010, CACM.

[2]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[3]  Rodney Van Meter,et al.  A Classical Network Protocol to Support Distributed Quantum State Tomography , 2016, 2016 IEEE Globecom Workshops (GC Wkshps).

[4]  Paul G. Kwiat,et al.  Photonic State Tomography , 2005 .

[5]  C. Nuzman,et al.  1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss , 2003, IEEE Photonics Technology Letters.

[6]  H. Briegel,et al.  Entanglement purification and quantum error correction , 2007, 0705.4165.

[7]  Alan Mink,et al.  Quantum Key Distribution (QKD) and Commodity Security Protocols: Introduction and Integration , 2010, ArXiv.

[8]  Sherali Zeadally,et al.  Unique Radio Innovation for the 21st Century: Building Scalable and Global RFID Networks , 2010 .

[9]  Rodney Van Meter,et al.  Classification of Quantum Repeater Attacks , 2015 .

[10]  Christoph Pacher,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[11]  Ivan vSupi'c,et al.  Self-testing of quantum systems: a review , 2019, Quantum.

[12]  V. Makarov,et al.  Risk Analysis of Trojan-Horse Attacks on Practical Quantum Key Distribution Systems , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  Rodney Van Meter,et al.  Quantum Networking , 2019, Cryptography Apocalypse.

[14]  Rodney Van Meter,et al.  Modeling of Measurement-based Quantum Network Coding on IBMQ Devices , 2019 .

[15]  Michael M. Wolf,et al.  Bell inequalities and entanglement , 2001, Quantum Inf. Comput..

[16]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[17]  S. Low,et al.  The "robust yet fragile" nature of the Internet. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. M. Bellovin,et al.  Security problems in the TCP/IP protocol suite , 1989, CCRV.

[19]  Joseph Fitzsimons,et al.  Device-Independent Verifiable Blind Quantum Computation , 2015, ArXiv.

[20]  Barbara M. Terhal Is entanglement monogamous? , 2004, IBM J. Res. Dev..

[21]  Rodney Van Meter,et al.  Modeling of measurement-based quantum network coding on a superconducting quantum processor , 2020 .

[22]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[23]  Elham Kashefi,et al.  Measurement-Based and Universal Blind Quantum Computation , 2010, SFM.

[24]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[25]  Mohamed Bourennane,et al.  Hacking the Bell test using classical light in energy-time entanglement–based quantum key distribution , 2015, Science Advances.

[26]  Rodney Van Meter,et al.  A blueprint for building a quantum computer , 2013, Commun. ACM.

[27]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[28]  Colin P. Williams,et al.  Quantum clock synchronization based on shared prior entanglement , 2000, Physical review letters.

[29]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[30]  Shota Nagayama,et al.  Distributed Quantum Computing Utilizing Multiple Codes on Imperfect Hardware , 2017, 1704.02620.

[31]  Ying Li,et al.  Long range failure-tolerant entanglement distribution , 2013 .

[32]  A. Winter,et al.  Monogamy of quantum entanglement and other correlations , 2003, quant-ph/0310037.

[33]  Dong Liu,et al.  Field and long-term demonstration of a wide area quantum key distribution network , 2014, Optics express.

[34]  Masahito Hayashi,et al.  Self-guaranteed measurement-based quantum computation , 2016, 1603.02195.

[35]  Rodney Van Meter,et al.  Path selection for quantum repeater networks , 2012, ArXiv.

[36]  Adam Rutkowski,et al.  Hybrid quantum network design against unauthorized secret-key generation, and its memory cost , 2020 .

[37]  A. Steane Quantum computing with trapped ions, atoms and light , 2001 .

[38]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[39]  W Dür,et al.  Long-Range Big Quantum-Data Transmission. , 2017, Physical review letters.

[40]  J. Eisert,et al.  Quantum certification and benchmarking , 2019, Nature Reviews Physics.

[41]  Dag R. Hjelme,et al.  Faked states attack on quantum cryptosystems , 2005 .

[42]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[43]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[44]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[45]  Dave Bacon,et al.  Recent progress in quantum algorithms , 2010, Commun. ACM.

[46]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[47]  J. S. BELLt,et al.  The Einstein-Podolsky-Rosen paradox , 1974, Synthese.

[48]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[49]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[50]  Rodney Van Meter,et al.  Quantum link bootstrapping using a RuleSet-based communication protocol , 2019, Physical Review A.

[51]  Rodney Van Meter,et al.  The network impact of hijacking a quantum repeater , 2017, 1701.04587.

[52]  Liang Jiang,et al.  Optimal approach to quantum communication using dynamic programming , 2007, Proceedings of the National Academy of Sciences.

[53]  A. Fowler,et al.  Surface code quantum communication. , 2009, Physical review letters.

[54]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[55]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[56]  P. Kwiat,et al.  Design and analysis of communication protocols for quantum repeater networks , 2015, 1505.01536.

[57]  Steve H. Weingart Physical Security Devices for Computer Subsystems: A Survey of Attacks and Defences , 2000, CHES.

[58]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[59]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[60]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[61]  Aikaterini Mitrokotsa,et al.  Threats to Networked RFID Systems , 2011 .

[62]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[63]  Matt Bishop,et al.  Computer Security: Art and Science , 2002 .

[64]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[65]  Wolfgang Dur,et al.  Entanglement generation secure against general attacks , 2016, 1610.01907.

[66]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[67]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[68]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[69]  Rodney Van Meter,et al.  Distributed Arithmetic on a Quantum Multicomputer , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[70]  Christof Paar,et al.  Physical Attacks , 2020, Encyclopedia of Cryptography and Security.

[71]  David Reilly,et al.  Engineering the quantum-classical interface of solid-state qubits , 2015, npj Quantum Information.

[72]  Mung Chiang,et al.  Securing Internet Applications from Routing Attacks , 2020, ArXiv.

[73]  E. Kashefi,et al.  Unconditionally verifiable blind quantum computation , 2012, 1203.5217.

[74]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[75]  Yang Liu,et al.  Device-independent quantum random-number generation , 2018, Nature.

[76]  Jacky Hartnett,et al.  An RFID Attacker Behavior Taxonomy , 2009, IEEE Pervasive Computing.

[77]  Sy-Yen Kuo,et al.  Fault-Tolerant Operations for Universal Blind Quantum Computation , 2013, ACM J. Emerg. Technol. Comput. Syst..

[78]  N. Gisin,et al.  Long-term performance of the SwissQuantum quantum key distribution network in a field environment , 2011, 1203.4940.

[79]  C. Elliott Building the quantum network* , 2002 .

[80]  Umesh V. Vazirani,et al.  Classical command of quantum systems , 2013, Nature.

[81]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[82]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[83]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[84]  Norbert Lütkenhaus,et al.  Optimal architectures for long distance quantum communication , 2015, Scientific Reports.

[85]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[86]  Adam D. Smith,et al.  Secure multi-party quantum computation , 2002, STOC '02.

[87]  Raymond Laflamme,et al.  Concatenated Quantum Codes , 1996 .

[88]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[89]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[90]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[91]  T. Morimae Verification for measurement-only blind quantum computing , 2012, 1208.1495.

[92]  Chip Elliott,et al.  Quantum cryptography in practice , 2003, SIGCOMM '03.

[93]  Julio A. de Oliveira Filho,et al.  A link layer protocol for quantum networks , 2019, SIGCOMM.

[94]  Hermann Kampermann,et al.  Quantum repeaters and quantum key distribution: The impact of entanglement distillation on the secret key rate , 2013, 1303.3456.

[95]  D. Gottesman,et al.  Longer-baseline telescopes using quantum repeaters. , 2011, Physical review letters.

[96]  Lov K. Grover Quantum Telecomputation , 1997 .

[97]  Norbert Lütkenhaus,et al.  Ultrafast and fault-tolerant quantum communication across long distances. , 2013, Physical review letters.

[98]  Avinatan Hassidim,et al.  Fast quantum byzantine agreement , 2005, STOC '05.

[99]  T. Morimae,et al.  Blind quantum computation protocol in which Alice only makes measurements , 2012, 1201.3966.