Robust stability check for fractional PID-based control systems

This paper considers a closed-loop system consisting of a fractional/integer order system and a fractional PID controller. Assuming that the uncertain coefficients of the fractional PID controller lie in some known intervals independently (i.e. that controller is a member of an interval family), the paper presents some easy to use theorems to investigate the robust bounded-input bounded-output stability of the resultant closed-loop system. Moreover, a finite frequency bound required in drawing the related graphs has also been provided. Finally, some numerical examples are presented to illustrate the results.

[1]  B. Vinagre Practical application of digital fractional-order controller to temperature control , 2002 .

[2]  Mohammad Haeri,et al.  Design of fractional order proportional–integral–derivative controller based on moment matching and characteristic ratio assignment method , 2011 .

[3]  I. Podlubny Fractional-Order Systems and -Controllers , 1999 .

[4]  Alain Oustaloup,et al.  Non Integer Model from Modal Decomposition for Time Domain System Identification , 2000 .

[5]  J. Partington,et al.  Coprime factorizations and stability of fractional differential systems , 2000 .

[6]  M. Marden Geometry of Polynomials , 1970 .

[7]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[8]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[9]  Mohammad Haeri,et al.  Robustness in fractional proportionalߝintegralߝderivative-based closed-loop systems , 2010 .

[10]  Jonathan R. Partington,et al.  Analysis of fractional delay systems of retarded and neutral type , 2002, Autom..

[11]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[12]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[13]  Mohammad Haeri,et al.  Robust stability testing function and Kharitonov-like theorem for fractional order interval systems , 2010 .

[14]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[15]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[16]  Mohammad Haeri,et al.  On robust stability of LTI fractional-order delay systems of retarded and neutral type , 2010, Autom..

[17]  Luigi Fortuna,et al.  New results on the synthesis of FO-PID controllers , 2010 .

[18]  R. Caponetto,et al.  PARAMETER TUNING OF A NON INTEGER ORDER PID CONTROLLER , .

[19]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[20]  B. Vinagre,et al.  FRACTIONAL DIGITAL CONTROL OF A HEAT SOLID : EXPERIMENTAL RESULTS , 2002 .

[21]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[22]  Serdar Ethem Hamamci An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers , 2007, IEEE Transactions on Automatic Control.

[23]  Vicente Feliu,et al.  On Fractional PID Controllers: A Frequency Domain Approach , 2000 .

[24]  Shankar P. Bhattacharyya,et al.  Robust and Non-fragile PID Controller Design , 2001 .

[25]  Serdar Ethem Hamamci Stabilization using fractional-order PI and PID controllers , 2007 .

[26]  Shankar P. Bhattacharyya,et al.  Robust, fragile or optimal? , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[27]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .