Balanced permutation codes

Motivated by charge balancing constraints for rank modulation schemes, we introduce the notion of balanced permutations and derive the capacity of balanced permutation codes. We also describe simple interleaving methods for permutation code constructions and show that they approach capacity.

[1]  Gideon Ehrlich,et al.  Loopless Algorithms for Generating Permutations, Combinations, and Other Combinatorial Configurations , 1973, JACM.

[2]  Nachum Dershowitz A simplified loop-free algorithm for generating permutations , 1975 .

[3]  Jayme Luiz Szwarcfiter,et al.  A Structured Program to Generate all Topological Sorting Arrangements , 1974, Information Processing Letters.

[4]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[5]  Richard P. Anstee,et al.  Permutations with Low Discrepancy Consecutive k-sums , 2002, J. Comb. Theory, Ser. A.

[6]  Paul H. Siegel,et al.  Perspectives on Balanced Sequences , 2013, ArXiv.

[7]  Eitan Yaakobi,et al.  Constrained codes for rank modulation , 2014, 2014 IEEE International Symposium on Information Theory.

[8]  Anxiao Jiang,et al.  Rank modulation for flash memories , 2008, 2008 IEEE International Symposium on Information Theory.

[9]  Frederic Sala,et al.  Constrained rank modulation schemes , 2013, 2013 IEEE Information Theory Workshop (ITW).

[10]  Donald E. Knuth,et al.  Efficient balanced codes , 1986, IEEE Trans. Inf. Theory.