Polynomially bounded algorithms for locatingp-centers on a tree
暂无分享,去创建一个
[1] S. Hakimi,et al. On p -Centers in Networks , 1978 .
[2] S. L. Hakimi,et al. Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .
[3] R. L. Francis,et al. A Minimax Location Problem on a Network , 1974 .
[4] Manfred W. Padberg,et al. Perfect zero–one matrices , 1974, Math. Program..
[5] Manuel Blum,et al. Time Bounds for Selection , 1973, J. Comput. Syst. Sci..
[6] E. Minieka. The m-Center Problem , 1970 .
[7] Fanica Gavril,et al. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graph , 1972, SIAM J. Comput..
[8] G. Dirac. On rigid circuit graphs , 1961 .
[9] D. Shier. A Min-Max Theorem for p-Center Problems on a Tree , 1977 .
[10] D. R. Fulkerson,et al. Blocking and anti-blocking pairs of polyhedra , 1971, Math. Program..
[11] O. Kariv,et al. An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .
[12] G. Handler. Minimax Location of a Facility in an Undirected Tree Graph , 1973 .
[13] Gabriel Y. Handler,et al. Finding Two-Centers of a Tree: The Continuous Case , 1978 .
[14] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[15] Peter Buneman,et al. A characterisation of rigid circuit graphs , 1974, Discret. Math..
[16] A. J. Goldman. Minimax Location of a Facility in a Network , 1972 .