Design of a self-testing and self-repairing structure for highly hierarchical ultra-large capacity memory chips

A memory architecture with the capability of self-testing and self-repairing is presented. The contributions of this memory architecture are twofold. First, because it incorporates self-testing and self-repairing structures, the memory chip can perform tests, locate faults, and repair itself without any external assistance from either test engineers or test equipment. This will greatly improve the functional yield and reduce the production cost. Second, the hierarchical organization used to achieve optimal conditions for memory access time also helps increase the efficiency of the self-testing and self-repairing structures. >

[1]  S. Yamada,et al.  7ns 4Mb BICMOS SRAM With Parallel Testing Circuit , 1991, 1991 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[2]  T. Nakayama,et al.  A 1 mu A retention 4 Mb SRAM with a thin-film-transistor load cell , 1990, 1990 37th IEEE International Conference on Solid-State Circuits.

[3]  Christos A. Papachristou,et al.  An Improved Method for Detecting Functional Faults in Semiconductor Random Access Memories , 1985, IEEE Transactions on Computers.

[4]  Jacob A. Abraham,et al.  Efficient Algorithms for Testing Semiconductor Random-Access Memories , 1978, IEEE Transactions on Computers.

[5]  Frans P. M. Beenker,et al.  A realistic self-test machine for static random access memories , 1988, International Test Conference 1988 Proceeding@m_New Frontiers in Testing.

[6]  W. Barraclough,et al.  Techniques for testing the microcomputer family , 1976, Proceedings of the IEEE.

[7]  Masaki Tsukude,et al.  A new array architecture for parallel testing in VLSI memories , 1989, Proceedings. 'Meeting the Tests of Time'., International Test Conference.

[8]  H. Shinohara,et al.  A divided word-line structure in the static RAM and its application to a 64K full CMOS RAM , 1983, IEEE Journal of Solid-State Circuits.

[9]  Pinaki Mazumder,et al.  A novel built-in self-repair approach to VLSI memory yield enhancement , 1990, Proceedings. International Test Conference 1990.

[10]  B. Koenemann,et al.  Built-in logic block observation techniques , 1979 .

[11]  W. Sohl Selecting Test Patterns for 4K RAMS , 1977 .

[12]  K. Anami,et al.  A 20 ns 4 Mb CMOS SRAM with hierarchical word decoding architecture , 1990, 1990 37th IEEE International Conference on Solid-State Circuits.

[13]  Sudhakar M. Reddy,et al.  Test Procedures for a Class of Pattern-Sensitive Faults in Semiconductor Random-Access Memories , 1980, IEEE Transactions on Computers.

[14]  Melvin A. Breuer,et al.  Diagnosis and Reliable Design of Digital Systems , 1977 .

[15]  Frans P. M. Beenker,et al.  Fault modeling and test algorithm development for static random access memories , 1988, International Test Conference 1988 Proceeding@m_New Frontiers in Testing.

[16]  Edward J. McCluskey,et al.  Design for Autonomous Test , 1981, IEEE Transactions on Computers.

[17]  J. Mucha,et al.  Built-In Test for Complex Digital Integrated Circuits , 1979, Fifth European Solid State Circuits Conference - ESSCIRC 79.

[18]  Kewal K. Saluja,et al.  A Novel Approach for Testing Memories Using a Built-In Self Testing Technique , 1986, International Test Conference.

[19]  S. Hanamura,et al.  A 9 ns 1 Mb CMOS SRAM , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[20]  Hiroshi Shimada,et al.  A 10ns 4Mb BICMOS TTL SRAM , 1991, 1991 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[21]  Richard A. Chapman,et al.  An 8 ns BiCMOS 1 Mb ECL SRAM with a configurable memory array size , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[22]  M. Ukita,et al.  A 21-mW 4-Mb CMOS SRAM for battery operation , 1991 .

[23]  Tsong Yueh Chen,et al.  Optimization of the number of levels of hierarchy in large-scale hierarchical memory systems , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[24]  K. Ishibashi,et al.  A 23 ns 4 Mb CMOS SRAM with 0.5 mu A standby current , 1990, 1990 37th IEEE International Conference on Solid-State Circuits.

[25]  Noriyuki Suzuki,et al.  A 15 ns 16 Mb CMOS SRAM with reduced voltage amplitude data bus , 1992, 1992 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[26]  Hiroki Koike,et al.  A BIST scheme using microprogram ROM for large capacity memories , 1990, Proceedings. International Test Conference 1990.

[27]  Shigeru Mori,et al.  AN ADDRESS MASKABLE PARALLEL TESTING FOR ULTRA HIGH DENSITY DRAMS , 1991, 1991, Proceedings. International Test Conference.