Additive Preconditioning for Matrix Computations

Our weakly random additive preconditioners facilitate the solution of linear systems of equations and other fundamental matrix computations. Compared to the popular SVD-based multiplicative preconditioners, these preconditioners are generated more readily and for a much wider class of input matrices. Furthermore they better preserve matrix structure and sparseness and have a wider range of applications, in particular to linear systems with rectangular coefficient matrices. We study the generation of such preconditioners and their impact on conditioning of the input matrix. Our analysis and experiments show the power of our approach even where we use very weak randomization and choose sparse and/or structured preconditioners.

[1]  G. Golub,et al.  A bibliography on semiseparable matrices* , 2005 .

[2]  Victor Y. Pan,et al.  Additive preconditioning, eigenspaces, and the inverse iteration☆ , 2009 .

[3]  Victor Y. Pan,et al.  Schur aggregation for linear systems and determinants , 2008, Theor. Comput. Sci..

[4]  Xinmao Wang,et al.  Effect of small rank modification on the condition number of a matrix , 2007, Comput. Math. Appl..

[5]  Victor Y. Pan,et al.  Null space and eigenspace computations with additive preprocessing , 2007, SNC '07.

[6]  Victor Y. Pan,et al.  The schur aggregation for solving linear systems of equations , 2007, SNC '07.

[7]  V. Pan Structured Matrices and Polynomials , 2001 .

[8]  V. Pan,et al.  Improved initialization of the accelerated and robust QR-like polynomial root-finding. , 2004 .

[9]  B. Mourrain,et al.  Computation of a specified root of a polynomial system of equations using eigenvectors , 2000 .

[10]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[11]  Jack Dongarra,et al.  Numerical Linear Algebra for High-Performance Computers , 1998 .

[12]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[13]  Willem J. Heiser,et al.  Two Purposes for Matrix Factorization: A Historical Appraisal , 2000, SIAM Rev..

[14]  Victor Y. Pan,et al.  TR-2007010: Error-Free Computations via Floating-Point Operations , 2007 .

[15]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[16]  V. Pan Structured Matrices and Polynomials: Unified Superfast Algorithms , 2001 .

[17]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[18]  V. Pan,et al.  Additive preconditioning for matrix computations , 2010 .

[19]  Victor Y. Pan,et al.  Computing Matrix Eigenvalues and Polynomial Zeros Where the Output is Real , 1998, SIAM J. Comput..

[20]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[21]  Gene H. Golub,et al.  A Rank-One Reduction Formula and Its Applications to Matrix Factorizations , 1995, SIAM Rev..

[22]  Terence Tao,et al.  The condition number of a randomly perturbed matrix , 2007, STOC '07.

[23]  Daniel A. Spielman The Smoothed Analysis of Algorithms , 2005, FCT.

[24]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[25]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[26]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[27]  Victor Y. Pan,et al.  Homotopic residual correction processes , 2006, Math. Comput..

[28]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[29]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[30]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[31]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[32]  Victor Y. Pan,et al.  Sign Determination in Residue Number Systems , 1999, Theor. Comput. Sci..

[33]  V. Pan,et al.  Methods of aggregation , 1980 .

[34]  K. Chen,et al.  Matrix preconditioning techniques and applications , 2005 .

[35]  Victor Y. Pan,et al.  Root-Finding with Eigen-Solving , 2007 .

[36]  Victor Y. Pan,et al.  Parallel complexity of tridiagonal symmetric Eigenvalue problem , 1991, SODA '91.

[37]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[38]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[39]  Victor Y. Pan,et al.  Additive preconditioning and aggregation in matrix computations , 2008, Comput. Math. Appl..

[40]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[41]  Victor Y. Pan,et al.  TR-2008009: Solving Homogeneous Linear Systems with Weakly Randomized Additive Preprocessing , 2008 .

[42]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.