A Multigrid Preconditioned Newton-Krylov Method

We study multigrid preconditioning of matrix-free Newton--Krylov methods as a means of developing more efficient nonlinear iterative methods for large scale simulation. Newton--Krylov methods have proven dependable in solving nonlinear systems while not requiring the explicit formation or storage of the complete Jacobian. However, the standard algorithmic scaling of Krylov methods is nonoptimal, with increasing linear system dimension. This motivates our use of multigrid-based preconditioning. It is demonstrated that a simple multigrid-based preconditioner can effectively limit the growth of Krylov iterations as the dimension of the linear system is increased. Different performance aspects of the proposed algorithm are investigated on three nonlinear, nonsymmetric, boundary value problems. Our goal is to develop a hybrid methodology which has Newton--Krylov nonlinear convergence properties and multigrid-like linear convergence scaling for large scale simulation.

[1]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[2]  William J. Rider,et al.  Accurate solution algorithms for incompressible multiphase flows , 1995 .

[3]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[4]  Dana A. Knoll,et al.  Inexact Newton's method solutions to the incompressible Navier-Stokes and energy equations using standard and matrix-free implementations , 1993 .

[5]  David E. Keyes,et al.  Aerodynamic applications of Newton- Krylov-Schwarz solvers , 1995 .

[6]  P. Brown A local convergence theory for combined inexact-Newton/finite-difference projection methods , 1987 .

[7]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[8]  Dana A. Knoll,et al.  5. Newton-Krylov-Schwarz Methods Applied to the Tokamak Edge Plasma Fluid Equations , 1995, Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and Engineering.

[9]  J. Dendy Black box multigrid , 1982 .

[10]  Cornelis W. Oosterlee,et al.  KRYLOV SUBSPACE ACCELERATION FOR NONLINEAR MULTIGRID SCHEMES , 1997 .

[11]  Cornelis W. Oosterlee,et al.  An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for Singularly Perturbed Problems , 1998, SIAM J. Sci. Comput..

[12]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[13]  David E. Keyes,et al.  Application of Newton-Krylov-Schwarz Algorithm to Low-Mach-Number Compressible Combustion , 1998 .

[14]  Dana A. Knoll,et al.  Fully coupled finite volume solutions of the incompressible Navier–Stokes and energy equations using an inexact Newton method , 1994 .

[15]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[16]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[17]  Juan C. Meza,et al.  A Multigrid Preconditioner for the Semiconductor Equations , 1996, SIAM J. Sci. Comput..

[18]  Clive A. J. Fletcher,et al.  Generating exact solutions of the two‐dimensional Burgers' equations , 1983 .

[19]  P. Brown,et al.  Matrix-free methods for stiff systems of ODE's , 1986 .

[20]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[21]  Dana A. Knoll,et al.  Enhanced Nonlinear Iterative Techniques Applied to a Nonequilibrium Plasma Flow , 1998, SIAM J. Sci. Comput..

[22]  S. Ashby,et al.  A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations , 1996 .

[23]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[24]  Cornelis W. Oosterlee,et al.  Multigrid Line Smoothers for Higher Order Upwind Discretizations of Convection-Dominated Problems , 1998 .

[25]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[26]  David E. Keyes,et al.  Newton-Krylov Methods for Low-Mach-Number Compressible Combustion , 1996 .

[27]  Homer F. Walker,et al.  NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..

[28]  Dana A. Knoll,et al.  An Improved Convection Scheme Applied to Recombining Divertor Plasma Flows , 1998 .