Novel sulfonated polysulfone ion exchange membranes for ionic polymer–metal composite actuators

Abstract A series of sulfonated polysulfone (SPSU) membranes with different degrees of sulfonation were prepared for fabricating cost-effective and high-performance ionic polymer–metal composite (IPMC) actuators. The experimental results show that the ion exchange capacity and water uptake of SPSU membranes increase with increasing their degree of sulfonation, and the proton conductivities of these hydrated membranes are subsequently enhanced. Compared with the commercial Nafion 117 ion exchange membrane, these SPSU membranes have higher ion exchange capacity and water uptake ability. Furthermore, the higher molecular rigidity of the SPSU membranes leads to higher tensile moduli in both dry and wet states than the Nafion membrane. The IPMC actuators made of the SPSU membranes demonstrate the large bending strain, fast response and excellent fatigue resistance under electric stimulation. Their electromechanical behaviors can be controlled by adjusting the sulfonation level of the SPSU ion exchange membranes.

[1]  J. Kim,et al.  Ion-conductive poly(vinyl alcohol)-based IPMCs , 2010 .

[2]  S. Nemat-Nasser,et al.  Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms , 2003 .

[3]  H. Wang,et al.  Performance enhancement of ionic polymer-metal composite actuators based on radiation-grafted Poly(ethylene-co-tetrafluoroethylene) , 2011 .

[4]  H. Jeong,et al.  Electrochemical behavior of a new type of perfluorinated carboxylate membrane/platinum composite , 2006 .

[5]  I. Oh,et al.  Fullerenol-based electroactive artificial muscles utilizing biocompatible polyetherimide. , 2011, ACS nano.

[6]  Xingping Zhou,et al.  Fabrication of an ionic polymer—carbon nanotube composite for a new configurative actuator , 2011 .

[7]  B. Smitha,et al.  Proton conducting composite membranes from polysulfone and heteropolyacid for fuel cell applications , 2005 .

[8]  I. Oh,et al.  Electro-active Polymer Actuator Based on Sulfonated Polyimide with Highly Conductive Silver Electrodes Via Self-metallization. , 2011, Macromolecular rapid communications.

[9]  Min Yu,et al.  Manufacture and performance of ionic polymer-metal composites , 2007 .

[10]  Jang-Woo Lee,et al.  High-strain air-working soft transducers produced from nanostructured block copolymer ionomer/silicate/ionic liquid nanocomposite membranes , 2013 .

[11]  F. Kremer,et al.  Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers , 2001, Nature.

[12]  I. Oh,et al.  Electric-stimuli-responsive bending actuator based on sulfonated polyetherimide , 2010 .

[13]  E. Abel,et al.  Electromechanical behaviour of Nafion-based soft actuators. , 2013, Journal of materials chemistry. B.

[14]  Hsin Her Yu,et al.  Study of electroactive shape memory polyurethane–carbon nanotube hybrids , 2011 .

[15]  Moon Jeong Park,et al.  Fast low-voltage electroactive actuators using nanostructured polymer electrolytes , 2013, Nature Communications.

[16]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[17]  D. Leo,et al.  Directly Copolymerized Poly(arylene sulfide sulfone) and Poly(arylene ether sulfone) Disulfonated Copolymers for Use in Ionic Polymer Transducers , 2007 .

[18]  Kinji Asaka,et al.  Recent advances in ionic polymer–metal composite actuators and their modeling and applications , 2013 .

[19]  Q. Nguyen,et al.  Simple method for immobilization of bio-macromolecules onto membranes of different types , 2003 .

[20]  J. Yip,et al.  Experimentally validated improvement of IPMC performance through alternation of pretreatment and electroless plating processes , 2010 .

[21]  E. Smela Conjugated Polymer Actuators for Biomedical Applications , 2003 .

[22]  Y. Xin,et al.  An investigation of sulfonated polysulfone humidity-sensitive materials , 1994 .

[23]  Pruthesh H. Vargantwar,et al.  Exceptional versatility of solvated block copolymer/ionomer networks as electroactive polymers , 2011 .

[25]  Jong-Oh Park,et al.  High actuation response of PVDF/PVP/PSSA based ionic polymer metal composites actuator , 2012 .

[26]  Robert B. Moore,et al.  Ionic actuators based on novel sulfonated ethylene vinyl alcohol copolymer membranes , 2005 .

[27]  Shiow-Shyung Lin,et al.  Pervaporation separation of water/ethanol mixture by sulfonated polysulfone membrane , 2001 .

[28]  N. Goo,et al.  Electroactive Shape‐Memory Polyurethane Composites Incorporating Carbon Nanotubes , 2005 .

[29]  Y. Mai,et al.  25 – Carbon nanotube nanocomposites for biomedical actuators , 2010 .

[30]  Xingping Zhou,et al.  Carbon Nanotube Enhanced Gripping in Polymer-Based Actuators , 2009 .

[31]  I. Oh,et al.  Dry‐Type Artificial Muscles Based on Pendent Sulfonated Chitosan and Functionalized Graphene Oxide for Greatly Enhanced Ionic Interactions and Mechanical Stiffness , 2013 .

[32]  Soma Guhathakurta,et al.  Lithium sulfonate promoted compatibilization in single ion conducting solid polymer electrolytes based on lithium salt of sulfonated polysulfone and polyether epoxy , 2010 .

[33]  I. Oh,et al.  Actuation of Electro‐Active Artificial Muscle at Ultralow Frequency , 2011 .

[34]  J. H. Park,et al.  Ionic Polymer‐Metal Composite Actuators Employing Radiation‐Grafted Fluoropolymers as Ion‐Exchange Membranes , 2006 .

[35]  M. Mun,et al.  Preparation and characterization of electroactive acrylic polymer-platinum composites , 2004 .

[36]  Il-Kwon Oh,et al.  Biomimetic electro-active polymer based on sulfonated poly (styrene-b-ethylene-co-butylene-b-styrene) , 2007 .

[37]  F. Carpi,et al.  Biomedical applications of electroactive polymer actuators , 2009 .

[38]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[39]  I. Oh,et al.  Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF , 2008 .

[40]  M. Mun,et al.  Effect of molecular structure on performance of electroactive ionic acrylic copolymer-platinum composites , 2006 .

[41]  Jean-Yves Sanchez,et al.  Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid , 2001 .

[42]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[43]  Jang-Woo Lee,et al.  Sulfonated polystyrene-based ionic polymer–metal composite (IPMC) actuator , 2011 .

[44]  S. Tadokoro,et al.  Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors , 2007 .

[45]  F. Nogata,et al.  Bending response of dehydrated ion exchange polymer membranes to the applied voltage , 2004 .

[46]  Y. Osada,et al.  A polymer gel with electrically driven motility , 1992, Nature.

[47]  R. Baughman Conducting polymer artificial muscles , 1996 .

[48]  Qibing Pei,et al.  Conjugated polymers and the bending cantilever method: Electrical muscles and smart devices , 1992 .

[49]  K. Kim,et al.  Ionic polymer-metal composites: I. Fundamentals , 2001 .

[50]  Benny D. Freeman,et al.  Water Purification by Membranes: The Role of Polymer Science , 2010 .

[51]  Barbar J. Akle,et al.  High-strain ionomeric–ionic liquid electroactive actuators , 2006 .

[52]  I. Oh,et al.  A Biomimetic Actuator Based on an Ionic Networking Membrane of Poly(styrene‐alt‐maleimide)‐Incorporated Poly(vinylidene fluoride) , 2008 .

[53]  Sungryul Yun,et al.  Discovery of Cellulose as a Smart Material , 2006 .

[54]  I. Oh,et al.  Electro‐active polymer actuators employing sulfonated poly(styrene‐ran‐ethylene) as ionic membranes , 2010 .

[55]  D. R. Lloyd,et al.  Synthesis and characterization of sulfonated poly(acrylene ether sulfones) , 1984 .

[56]  I. Oh,et al.  Novel biomimetic actuator based on SPEEK and PVDF , 2009 .

[57]  Xin Lan,et al.  Review of electro-active shape-memory polymer composite , 2009 .