Tuning structure and mechanical properties of Ta-C coatings by N-alloying and vacancy population

[1]  L. Nyholm,et al.  Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance , 2018, Materials & Design.

[2]  D. Holec,et al.  Ab initio inspired design of ternary boride thin films , 2018, Scientific Reports.

[3]  D. Primetzhofer,et al.  Influence of carbon deficiency on phase formation and thermal stability of super-hard TaCy thin films , 2018 .

[4]  M. Friák,et al.  Stability and elasticity of metastable solid solutions and superlattices in the MoN–TaN system: First-principles calculations , 2017, 1703.07583.

[5]  I. Petrov,et al.  Elastic properties and plastic deformation of TiC- and VC-based pseudobinary alloys , 2018 .

[6]  Q. Meng,et al.  N dependent tribochemistry: Achieving superhard wear-resistant low-friction TaCxNy films , 2017 .

[7]  D. Holec,et al.  Vacancy-driven extended stability of cubic metastable Ta-Al-N and Nb-Al-N phases , 2017, 1706.09959.

[8]  L. Yate,et al.  Robust tribo-mechanical and hot corrosion resistance of ultra-refractory Ta-Hf-C ternary alloy films , 2017, Scientific Reports.

[9]  C. Mitterer,et al.  Hierarchical Architectures to Enhance Structural and Functional Properties of Brittle Materials   , 2017 .

[10]  D. Holec,et al.  Stability and elasticity of metastable solid solutions and superlattices in the MoN-TaN system: a first-principles study , 2017, 1703.07583.

[11]  D. Primetzhofer,et al.  Non-reactively sputtered ultra-high temperature Hf-C and Ta-C coatings , 2017 .

[12]  M. Odén,et al.  Non-equilibrium vacancy formation energies in metastable alloys - A case study of Ti0.5Al0.5N , 2017 .

[13]  Salvatore Grasso,et al.  Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system , 2016, Scientific Reports.

[14]  R. Hahn,et al.  Superlattice effect for enhanced fracture toughness of hard coatings , 2016 .

[15]  P. Petersson,et al.  A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis. , 2016, The Review of scientific instruments.

[16]  O. Svoboda,et al.  Point defects stabilise cubic Mo-N and Ta-N , 2016, 1604.02718.

[17]  I. Petrov,et al.  Vacancy-induced toughening in hard single-crystal V0.5Mo0.5Nx/MgO(0 0 1) thin films , 2014 .

[18]  I. Petrov,et al.  Toughness enhancement in hard ceramic thin films by alloy design , 2013 .

[19]  J. B. Adams,et al.  Ab initio study of the stable phases of 1:1 tantalum nitride , 2013 .

[20]  Xiao-lin Zhou,et al.  Structure and mechanical properties of tantalum mononitride under high pressure: A first-principles study. , 2012, Journal of applied physics.

[21]  Dianzhong Li,et al.  Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion , 2012, Scientific Reports.

[22]  Tohru Sato,et al.  Critical reinvestigation of vibronic couplings in picene from view of vibronic coupling density analysis , 2012, 1203.2013.

[23]  M. Odén,et al.  Ab initio elastic tensor of cubic Ti 0.5 Al 0.5 N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence , 2011, 1111.0548.

[24]  Martin L. Green,et al.  Physical and chemical characterization of combinatorial metal gate electrode Ta-C-N library film , 2010 .

[25]  Rong Yu,et al.  Calculations of single-crystal elastic constants made simple , 2010, Comput. Phys. Commun..

[26]  L. Hultman,et al.  Electronic mechanism for toughness enhancement in Ti{sub x}M{sub 1-x}N (M=Mo and W) , 2010 .

[27]  Renaud A. L. Vallée,et al.  In situ tuning the optical properties of a cavity by wrinkling , 2010 .

[28]  Zhijian Wu,et al.  First principles investigation on the ultra‐incompressible and hard TaN , 2009, J. Comput. Chem..

[29]  N. phil.,et al.  I. On the constitution of atoms and molecules , 2009 .

[30]  Mostafa M. Abdalla,et al.  Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers , 2009 .

[31]  Sam Zhang,et al.  Hard yet Tough Nanocomposite Coatings – Present Status and Future Trends , 2007 .

[32]  P. Basnyat,et al.  Physical and chemical properties of sputter-deposited TaCxNy films , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  J. Schreuer,et al.  Elastic properties of tantalum carbide (TaC) , 2005 .

[34]  C. Mitterer,et al.  Self-organized nanostructures in the Ti–Al–N system , 2003 .

[35]  W. Williams,et al.  Electrical properties of hard materials , 1999 .

[36]  T. Sajavaara,et al.  Detection efficiency of time-of-flight energy elastic recoil detection analysis systems , 1999 .

[37]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[38]  K. Frisk Analysis of the phase diagram and thermochemistry in the Ta–N and the Ta–C–N systems , 1998 .

[39]  Hugh O. Pierson,et al.  Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications , 1996 .

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[41]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[42]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[43]  D. G. Pettifor,et al.  Theoretical predictions of structure and related properties of intermetallics , 1992 .

[44]  Ferreira,et al.  Electronic properties of random alloys: Special quasirandom structures. , 1990, Physical review. B, Condensed matter.

[45]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[46]  R. Birringer,et al.  Ceramics ductile at low temperature , 1987, Nature.

[47]  R. M. Cannon,et al.  Overview no. 48 , 1986 .

[48]  P. Shaffer,et al.  Elastic moduli of niobium carbide and tantalum carbide at high temperature , 1971 .

[49]  H. L. Brown,et al.  Elastic Properties of Some Polycrystalline Transition-Metal Monocarbides , 1966 .

[50]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[51]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[52]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[53]  John William Nicholson,et al.  The Constitution of Atoms and Molecules , 1914, Nature.

[54]  C. Weinberger,et al.  Influence of carbon vacancy formation on the elastic constants and hardening mechanisms in transition metal carbides , 2015 .

[55]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[56]  L. Hultman,et al.  Electronic mechanism for toughness enhancement in Ti x M 1x N ( M = Mo and W ) , 2010 .

[57]  E. Opila,et al.  UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications , 2007 .