General Relativistic Wormhole Connections from Planck-Scales and the ER = EPR Conjecture

Einstein’s equations of general relativity (GR) can describe the connection between events within a given hypervolume of size L larger than the Planck length LP in terms of wormhole connections where metric fluctuations give rise to an indetermination relationship that involves the Riemann curvature tensor. At low energies (when L≫LP), these connections behave like an exchange of a virtual graviton with wavelength λG=L as if gravitation were an emergent physical property. Down to Planck scales, wormholes avoid the gravitational collapse and any superposition of events or space–times become indistinguishable. These properties of Einstein’s equations can find connections with the novel picture of quantum gravity (QG) known as the “Einstein–Rosen (ER) = Einstein–Podolski–Rosen (EPR)” (ER = EPR) conjecture proposed by Susskind and Maldacena in Anti-de-Sitter (AdS) space–times in their equivalence with conformal field theories (CFTs). In this scenario, non-traversable wormhole connections of two or more distant events in space–time through Einstein–Rosen (ER) wormholes that are solutions of the equations of GR, are supposed to be equivalent to events connected with non-local Einstein–Podolski–Rosen (EPR) entangled states that instead belong to the language of quantum mechanics. Our findings suggest that if the ER = EPR conjecture is valid, it can be extended to other different types of space–times and that gravity and space–time could be emergent physical quantities if the exchange of a virtual graviton between events can be considered connected by ER wormholes equivalent to entanglement connections.

[1]  S. Dimopoulos,et al.  Small Numbers From Tunneling Between Brane Throats , 2001 .

[2]  Luis Javier Garay Elizondo,et al.  Quantum-gravity and minimum length , 1995 .

[3]  J. Maldacena,et al.  Large N Field Theories, String Theory and Gravity , 1999, hep-th/9905111.

[4]  Robert F. Penna,et al.  Are entangled particles connected by wormholes? Evidence for the ER=EPR conjecture from entropy inequalities , 2013, 1308.0289.

[5]  Gaurav Narain,et al.  Non-locality effect on the entanglement entropy in de Sitter , 2018, Journal of Cosmology and Astroparticle Physics.

[6]  R. Prevedel,et al.  Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement , 2010, 1012.0332.

[7]  T. Tweed Space , 2011, STEM Education in the Primary School.

[8]  Andrew Strominger The dS/CFT correspondence , 2001 .

[9]  Yao-Chieh Hu,et al.  Fuzzy Euclidean wormholes in de Sitter space , 2016, 1611.08468.

[10]  Olivier Biquard,et al.  Reconstructing Minkowski space-time , 2004 .

[11]  Bryce S. DeWitt,et al.  The Quantum Theory of Interacting Gravitational and Spinor Fields , 1952 .

[12]  L. Rosenfeld,et al.  Über die Gravitationswirkungen des Lichtes , 1930 .

[13]  I. Tamm HIGHER-SPIN GAUGE THEORIES IN FOUR , THREE AND TWO DIMENSIONS , 1996 .

[14]  Per Sundell,et al.  De Sitter space and entanglement , 2019, Classical and Quantum Gravity.

[15]  Gardo Blado,et al.  Entanglement and the generalized uncertainty principle , 2018, Physics Essays.

[16]  Pablo Bueno,et al.  Echoes of Kerr-like wormholes , 2017, 1711.00391.

[17]  A. Garrett Lisi Quantum mechanics from a universal action reservoir , 2006 .

[18]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[19]  A.O.Barvinsky Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology , 2014, 1408.6112.

[20]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[21]  Leonard Susskind,et al.  Copenhagen vs Everett, Teleportation, and ER=EPR , 2016, 1604.02589.

[22]  S. Christensen Quantum Theory of Gravity , 1984 .

[23]  Xiao-Liang Qi,et al.  Eternal traversable wormhole , 2018, 1804.00491.

[24]  Tiziana Vistarini,et al.  Holographic space and time: Emergent in what sense? , 2017 .

[25]  Bryce S. DeWitt Approximate effective action for quantum gravity , 1981 .

[26]  Ronald J. Adler,et al.  On Gravity and the Uncertainty Principle , 1999 .

[27]  Ignazio Licata,et al.  Event-Based Quantum Mechanics: A Context for the Emergence of Classical Information , 2019, Symmetry.

[28]  D. Minic,et al.  What is Quantum Theory of Gravity , 2004, hep-th/0401028.

[29]  Juan Maldacena,et al.  Entanglement entropy in de Sitter space , 2012, 1210.7244.

[30]  L. Susskind,et al.  Cool horizons for entangled black holes , 2013, 1306.0533.

[31]  Diandian Wang,et al.  Creating a traversable wormhole , 2019, Classical and Quantum Gravity.

[32]  G. Rigolin Uncertainty relations for entangled states , 2000 .

[33]  Gao Shan,et al.  A Model of Wavefunction Collapse in Discrete Space-Time , 2006 .

[34]  Ignazio Licata,et al.  Radiation from charged particles due to explicit symmetry breaking in a gravitational field , 2017, 1702.04096.

[35]  Joseph Polchinski,et al.  Dual Purpose Landscaping Tools: Small Extra Dimensions in AdS/CFT , 2009, 0908.0756.

[36]  Anton Zeilinger,et al.  Quantum [Un]Speakables II , 2017 .

[37]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[38]  Vladimir Dzhunushaliev,et al.  Wormholes and Flux Tubes in 5D Kaluza-Klein Theory , 1999 .

[39]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[40]  Rovelli,et al.  Quantum mechanics without time: A model. , 1990, Physical review. D, Particles and fields.

[41]  Gustavo Rigolin Entanglement, Identical Particles and the Uncertainty Principle , 2016 .

[42]  M. Raamsdonk,et al.  BUILDING UP SPACE–TIME WITH QUANTUM ENTANGLEMENT , 2010 .

[43]  S. Hawking Particle creation by black holes , 1975 .

[44]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[45]  S. Dimopoulos,et al.  Generating Small Numbers by Tunneling in Multi-Throat Compactifications , 2004 .

[46]  K. Narayan,et al.  de Sitter entropy as entanglement , 2019, International Journal of Modern Physics D.

[47]  Jonathan P. Dowling,et al.  Probability, unitarity, and realism in generally covariant quantum information , 2007 .

[48]  Sean M. Carroll,et al.  Bulk entanglement gravity without a boundary: Towards finding Einstein's equation in Hilbert space , 2017, 1712.02803.

[49]  Matt Visser,et al.  Lorentzian Wormholes: From Einstein to Hawking , 1995 .

[50]  B. Dewitt QUANTUM THEORY OF GRAVITY. III. APPLICATIONS OF THE COVARIANT THEORY. , 1967 .

[51]  Ling Zhou,et al.  Spacetime as the optimal generative network of quantum states: a roadmap to QM=GR? , 2018, 1804.07908.

[52]  Mark Van Raamsdonk Building up spacetime with quantum entanglement , 2010 .

[53]  Vladimir Dzhunushaliev,et al.  MULTIDIMENSIONAL GEOMETRICAL MODEL OF THE RENORMALIZED ELECTRICAL CHARGE WITH SPLITTING OFF THE EXTRA COORDINATES , 1998 .

[54]  Xiao-Liang Qi,et al.  Exact holographic mapping and emergent space-time geometry , 2013, 1309.6282.

[55]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[56]  Alan D. Martin,et al.  Review of Particle Physics , 2018, Physical Review D.

[57]  F. Scardigli Generalized Uncertainty Principle in Quantum Gravity from Micro-Black Hole Gedanken Experiment , 1999, hep-th/9904025.

[58]  Anton Zeilinger,et al.  Quantum (Un)speakables: From Bell to Quantum Information , 2010 .

[59]  B. Thidé Electromagnetic Field Theory , 2011 .

[60]  Carlo Rovelli,et al.  Loop Quantum Gravity , 2008, Living Reviews in Relativity.

[61]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[62]  B. Dewitt QUANTUM THEORY OF GRAVITY. II. THE MANIFESTLY COVARIANT THEORY. , 1967 .

[63]  Paola Zizzi,et al.  Entangled spacetime , 2018, Modern Physics Letters A.

[64]  Thomas Hartman,et al.  Higher spin realization of the DS/CFT correspondence , 2011, 1108.5735.

[65]  T. Takayanagi,et al.  A covariant holographic entanglement entropy proposal , 2007, 0705.0016.

[66]  Albert Einstein,et al.  The Particle Problem in the General Theory of Relativity , 1935 .

[67]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[68]  Vitor Cardoso,et al.  Is the Gravitational-Wave Ringdown a Probe of the Event Horizon? , 2016, Physical review letters.

[69]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[70]  Xi Dong,et al.  De Sitter holography and entanglement entropy , 2018, Journal of High Energy Physics.

[71]  E. Verlinde,et al.  On the origin of gravity and the laws of Newton , 2010, 1001.0785.

[72]  Latham Boyle,et al.  CPT-Symmetric Universe. , 2018, Physical review letters.

[73]  Ning Bao,et al.  Traversable wormholes as quantum channels: exploring CFT entanglement structure and channel capacity in holography , 2018, Journal of High Energy Physics.

[74]  Yian Lei,et al.  CSCO Criterion for Entanglement and Heisenberg Uncertainty Principle , 2013 .

[75]  Juan Maldacena,et al.  Traversable wormholes in four dimensions , 2018, Classical and Quantum Gravity.

[76]  R. A. Konoplya,et al.  How to tell the shape of a wormhole by its quasinormal modes , 2018, Physics Letters B.

[77]  Michael George Gray Laidlaw,et al.  Quantum Mechanics in Multiply Connected Spaces. , 1971 .

[78]  Mann,et al.  Hilbert space representation of the minimal length uncertainty relation. , 1995, Physical review. D, Particles and fields.

[79]  Germano Resconi,et al.  Unification of Quantum and Gravity by Non Classical Information Entropy Space , 2013, Entropy.

[80]  L. Rosenfeld,et al.  Zur Quantelung der Wellenfelder , 1930 .

[81]  I. Licata,et al.  Hartle-Hawking boundary conditions as Nucleation by de Sitter Vacuum , 2019, Physics of the Dark Universe.

[82]  B. Dewitt Quantum Theory of Gravity. I. The Canonical Theory , 1967 .