From Bulk to Surface: Sodium Treatment Reduces Recombination at the Nickel Oxide/Perovskite Interface

The effect of sodium doping in NiO as a contact layer for perovskite solar cells is investigated. A combined X‐ray diffraction and X‐ray photoelectron spectroscopy analysis reveals that Na+ mostly segregates as NaOx/NaCl species around NiO crystallites, with the effect of reducing interface capacitance as revealed by impedance spectroscopy. Inspired by this finding, the NiO/perovskite interface in perovskite solar cells is modified via insertion of an ultrathin NaCl interlayer, which increases the NiO work‐function by 0.3 eV. This leads to an increase of power conversion efficiency, approaching 18%, and open‐circuit voltage due to a remarkable suppression of surface recombination, as revealed by photoluminescence analysis and light intensity–dependent electrical measurements.

[1]  T. Hu,et al.  High-performance inverted planar perovskite solar cells based on solution-processed rubidium-doped nickel oxide hole-transporting layer , 2019, Organic Electronics.

[2]  Yongli Gao,et al.  Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells , 2019, Nature Energy.

[3]  Yangying Zhou,et al.  Critical roles of potassium in charge-carrier balance and diffusion induced defect passivation for efficient inverted perovskite solar cells , 2019, Journal of Materials Chemistry A.

[4]  B. Rech,et al.  Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield , 2018 .

[5]  Malcolm K Horne,et al.  A Programmed Anti‐Inflammatory Nanoscaffold (PAIN) as a 3D Tool to Understand the Brain Injury Response , 2018, Advanced materials.

[6]  S. Albrecht,et al.  Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells , 2018, Advanced Energy Materials.

[7]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[8]  A. Carlo,et al.  Inverted perovskite solar cells with transparent hole transporting layer based on semiconducting nickel oxide , 2018 .

[9]  Y. Hao,et al.  Enhanced Planar Perovskite Solar Cell Performance via Contact Passivation of TiO2/Perovskite Interface with NaCl Doping Approach , 2018, ACS Applied Energy Materials.

[10]  Bingqiang Cao,et al.  Zinc as a New Dopant for NiOx-Based Planar Perovskite Solar Cells with Stable Efficiency near 20% , 2018, ACS Applied Energy Materials.

[11]  D. M. Migunov,et al.  Tris(ethylene diamine) nickel acetate as a promising precursor for hole transport layer in planar structured perovskite solar cells , 2018 .

[12]  David G Lidzey,et al.  Ionic-to-electronic current amplification in hybrid perovskite solar cells: ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices , 2018, Energy & Environmental Science.

[13]  Philip Schulz,et al.  Interface Design for Metal Halide Perovskite Solar Cells , 2018 .

[14]  Olivier Durand,et al.  Light-induced lattice expansion leads to high-efficiency perovskite solar cells , 2018, Science.

[15]  Sumei Huang,et al.  Efficient and ultraviolet durable planar perovskite solar cells via a ferrocenecarboxylic acid modified nickel oxide hole transport layer. , 2018, Nanoscale.

[16]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[17]  Guangda Niu,et al.  Oxygen doping in nickel oxide for highly efficient planar perovskite solar cells , 2018 .

[18]  Ullrich Steiner,et al.  A Ga-doped SnO2 mesoporous contact for UV stable highly efficient perovskite solar cells , 2018 .

[19]  Seonhee Lee,et al.  Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. , 2018, Journal of the American Chemical Society.

[20]  Anders Hagfeldt,et al.  Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells , 2018 .

[21]  Minkyu Kim,et al.  Improving Uniformity and Reproducibility of Hybrid Perovskite Solar Cells via a Low-Temperature Vacuum Deposition Process for NiOx Hole Transport Layers. , 2018, ACS applied materials & interfaces.

[22]  S. Zakeeruddin,et al.  Effect of Cs-Incorporated NiOx on the Performance of Perovskite Solar Cells , 2017, ACS omega.

[23]  I. Mora‐Seró,et al.  Interfaces in Perovskite Solar Cells , 2017 .

[24]  Sungkyun Park,et al.  Role of Na-doping-induced oxygen vacancies in the variation of electrical properties of NiO ceramics , 2017 .

[25]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[26]  Kenjiro Miyano,et al.  NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility , 2017, ACS omega.

[27]  A. Hollenkamp,et al.  Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magnéli Ti4O7 Microspheres for High‐Performance Li–S Battery , 2017 .

[28]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[29]  Juan Bisquert,et al.  Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. , 2016, The journal of physical chemistry letters.

[30]  Lei Lei,et al.  Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility , 2016 .

[31]  Jooho Moon,et al.  Retarding Crystallization during Facile Single Coating of NaCl-Incorporated Precursor Solution for Efficient Large-Area Uniform Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[32]  Adam Pockett,et al.  Microseconds, milliseconds and seconds: deconvoluting the dynamic behaviour of planar perovskite solar cells. , 2016, Physical chemistry chemical physics : PCCP.

[33]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[34]  L. Martinu,et al.  Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices. , 2016, ACS applied materials & interfaces.

[35]  H. Jung,et al.  An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. , 2016, Nanoscale.

[36]  K. Wong,et al.  Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance , 2016 .

[37]  Juan Bisquert,et al.  Properties of Contact and Bulk Impedances in Hybrid Lead Halide Perovskite Solar Cells Including Inductive Loop Elements , 2016 .

[38]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[39]  A. Nozik,et al.  Site-Selective Passivation of Defects in NiO Solar Photocathodes by Targeted Atomic Deposition. , 2016, ACS applied materials & interfaces.

[40]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[41]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[42]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[43]  Feng Huang,et al.  CH₃NH₃PbI₃-based planar solar cells with magnetron-sputtered nickel oxide. , 2014, ACS applied materials & interfaces.

[44]  K. Wijayantha,et al.  Electrochemical determination of the density of states of nanostructured NiO films. , 2014, ACS applied materials & interfaces.

[45]  G. Boschloo,et al.  Solid-state perovskite-sensitized p-type mesoporous nickel oxide solar cells. , 2014, ChemSusChem.

[46]  Ming-Hsien Li,et al.  Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. , 2014, ACS applied materials & interfaces.

[47]  Yun-Chorng Chang,et al.  Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[48]  T. Kenny,et al.  CORRIGENDUM: Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators , 2014, Scientific Reports.

[49]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[50]  M. Knörnschild,et al.  Corrigendum: Bats host major mammalian paramyxoviruses , 2014, Nature Communications.

[51]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[52]  L. Kavan,et al.  Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells , 2014 .

[53]  S. Sheehan,et al.  Probing the redox states at the surface of electroactive nanoporous NiO thin films. , 2014, ACS applied materials & interfaces.

[54]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[55]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[56]  J. Nelson,et al.  On the Differences between Dark and Light Ideality Factor in Polymer:Fullerene Solar Cells , 2013 .

[57]  Jean-François Guillemoles,et al.  Contactless mapping of saturation currents of solar cells by photoluminescence , 2012 .

[58]  F. Fabregat‐Santiago,et al.  Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[59]  A. Carlo,et al.  Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties , 2011 .

[60]  T. Unold,et al.  Photoluminescence Analysis of Thin‐Film Solar Cells , 2011 .

[61]  A. Vollmer,et al.  Investigation of surface and non-local screening effects in the Ni 2p core level photoemission spectra of NiO , 2011 .

[62]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[63]  K. Darowicki,et al.  Selection of measurement frequency in Mott–Schottky analysis of passive layer on nickel , 2006 .

[64]  G. H. Bauer,et al.  Quasi-Fermi level splitting and identification of recombination losses from room temperature luminescence in Cu(In1−xGax)Se2 thin films versus optical band gap , 2005 .

[65]  Robert Schlögl,et al.  In-situ X-ray photoelectron spectroscopy study of the oxidation of CuGaSe2 , 2005 .

[66]  Carmelo Giacovazzo,et al.  Fundamentals of Crystallography , 2002 .

[67]  M. W. Roberts,et al.  Alkali metal reactions with Ni(110)–O and NiO(100) surfaces , 2000 .

[68]  P. Würfel,et al.  The chemical potential of radiation , 1982 .

[69]  M. Lampert,et al.  Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps , 1956 .

[70]  Xiaofeng Wang,et al.  Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer , 2018 .

[71]  Shahjadi Hisan Farjana,et al.  Recent Advances in Nanogenerator‐Driven Self‐Powered Implantable Biomedical Devices , 2018 .

[72]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[73]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[74]  P. Würfel,et al.  Physics of solar cells : from basic principles to advanced concepts , 2009 .

[75]  M. W. Roberts,et al.  Oxidation states at alkali-metal-doped Ni(110)–O surfaces , 2001 .

[76]  D. Gonbeau,et al.  Systematic XPS studies of metal oxides, hydroxides and peroxides , 2000 .

[77]  津田 惟雄,et al.  Electronic conduction in oxides , 2000 .

[78]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .