Recognition of C4-Free and 1/2-Hyperbolic Graphs

The shortest-path metric ${\textup{d}}$ of a connected graph $G$ is ${1}/{2}$-hyperbolic if and only if it satisfies ${\textup{d}}(u,v) + {\textup{d}}(x,y) \leq \max \{ {\textup{d}}(u,x) + {\textup{d}}(v,y), {\textup{d}}(u,y) + {\textup{d}}(v,x) \} + 1$, for every $4$-tuple $u$, $x$, $v$, $y$ of $G$. We show that the problem of deciding whether an unweighted graph is ${1}/{2}$-hyperbolic is subcubic equivalent to the problem of determining whether there is a chordless cycle of length $4$ in a graph. An improved algorithm is also given for both problems, taking advantage of fast rectangular matrix multiplication. In the worst case it runs in $O(n^{3.26})$-time.

[1]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..

[2]  Ran Duan,et al.  Approximation Algorithms for the Gromov Hyperbolicity of Discrete Metric Spaces , 2014, LATIN.

[3]  Daniel Lokshtanov Finding the longest isometric cycle in a graph , 2009, Discret. Appl. Math..

[4]  Douglas R. Shier,et al.  On powers and centers of chordal graphs , 1983, Discret. Appl. Math..

[5]  Victor Chepoi,et al.  Cop and Robber Game and Hyperbolicity , 2013, SIAM J. Discret. Math..

[6]  Edward Howorka,et al.  On metric properties of certain clique graphs , 1979, J. Comb. Theory, Ser. B.

[7]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory B.

[8]  Victor Y. Pan,et al.  Fast Rectangular Matrix Multiplication and Applications , 1998, J. Complex..

[9]  Nicolas Nisse,et al.  k-Chordal Graphs: From Cops and Robber to Compact Routing via Treewidth , 2012, Algorithmica.

[10]  Raphael Yuster,et al.  Fast sparse matrix multiplication , 2004, TALG.

[11]  Jeremy P. Spinrad Finding Large Holes , 1991, Inf. Process. Lett..

[12]  JOSÉ M RODRÍGUEZ,et al.  Bounds on Gromov hyperbolicity constant in graphs , 2012 .

[13]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[14]  Feodor F. Dragan Tree-Like Structures in Graphs: A Metric Point of View , 2013, WG.

[15]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[16]  Raimund Seidel,et al.  On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs , 1995, J. Comput. Syst. Sci..

[17]  François Le Gall,et al.  Faster Algorithms for Rectangular Matrix Multiplication , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[18]  Yaokun Wu,et al.  Hyperbolicity and Chordality of a Graph , 2011, Electron. J. Comb..

[19]  J. R. Johnson,et al.  Implementation of Strassen's Algorithm for Matrix Multiplication , 1996, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[20]  Feodor F. Dragan,et al.  A Note on Distance Approximating Trees in Graphs , 2000, Eur. J. Comb..

[21]  Uri Zwick,et al.  All-Pairs Almost Shortest Paths , 1997, SIAM J. Comput..

[22]  Liam Roditty,et al.  Minimum Weight Cycles and Triangles: Equivalences and Algorithms , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[23]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[24]  Marián Boguñá,et al.  Sustaining the Internet with Hyperbolic Mapping , 2010, Nature communications.

[25]  Don Coppersmith,et al.  Rectangular Matrix Multiplication Revisited , 1997, J. Complex..