Lower bounds for stability margin of n-dimensional discrete systems

This paper derives lower bounds for the stability margin of n-dimensional discrete systems in the Roesser’s state space setting. The lower bounds for stability margin are derived based on the MacLaurine series expansion. Numerical examples are given to illustrate the results.

[1]  Ezra Zeheb,et al.  N-dimensional stability margins computation and a variable transformation , 1982 .

[2]  T. Hinamoto 2-D Lyapunov equation and filter design based on the Fornasini-Marchesini second model , 1993 .

[3]  Panajotis Agathoklis,et al.  The Lyapunov equation for n-dimensional discrete systems , 1988 .

[4]  J. Chou Pole-assignment robustness in a specified disk , 1991 .

[5]  Panajotis Agathoklis,et al.  Stability and the Lyapunov equation for n-dimensional digital systems , 1997 .

[6]  M. Fahmy,et al.  Stability and overflow oscillations in 2-D state-space digital filters , 1981 .

[7]  R. Roesser A discrete state-space model for linear image processing , 1975 .

[8]  Panajotis Agathoklis,et al.  Lower bounds for the stability margin of discrete two-dimensional systems based on the two-dimensional Lyapunov equation , 1988 .

[9]  Ettore Fornasini,et al.  Doubly-indexed dynamical systems: State-space models and structural properties , 1978, Mathematical systems theory.

[10]  A. Ahmed,et al.  On the stability of two-dimensional discrete systems , 1980 .

[11]  Wu-Sheng Lu On a Lyapunov approach to stability analysis of 2-D digital filters , 1994 .

[12]  Brian D. O. Anderson,et al.  Stability and the matrix Lyapunov equation for discrete 2-dimensional systems , 1986 .

[13]  Jie Chen,et al.  Explicit formulas for stability radii of nonnegative and Metzlerian matrices , 1997, IEEE Trans. Autom. Control..

[14]  Panajotis Agathoklis,et al.  The margin of stability of 2-D linear discrete systems , 1982 .