A generalization of the injectivity condition for Projected Entangled Pair States

We introduce a family of tensor network states that we term semi-injective Projected Entangled-Pair States (PEPS). They extend the class of injective PEPS and include other states, like the ground states of the AKLT and the CZX models in square lattices. We construct parent Hamiltonians for which semi-injective PEPS are unique ground states. We also determine the necessary and sufficient conditions for two tensors to generate the same family of such states in two spatial dimensions. Using this result, we show that the third cohomology labeling of Symmetry Protected Topological phases extends to semi-injective PEPS.

[1]  J. Cirac,et al.  A canonical form for Projected Entangled Pair States and applications , 2009, 0908.1674.

[2]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[3]  David Pérez-García,et al.  Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .

[4]  Xiao-Gang Wen,et al.  Symmetry protected topological orders and the group cohomology of their symmetry group , 2011, 1106.4772.

[5]  David Pérez-García,et al.  Characterizing symmetries in a projected entangled pair state , 2010 .

[6]  R. Høegh-Krohn,et al.  Spectral Properties of Positive Maps on C*‐Algebras , 1978 .

[7]  J. Cirac,et al.  Fundamental limitations in the purifications of tensor networks , 2015, 1512.05709.

[8]  J. Cirac,et al.  Resonating valence bond states in the PEPS formalism , 2012, 1203.4816.

[9]  J. Cirac,et al.  Chiral projected entangled-pair state with topological order. , 2014, Physical review letters.

[10]  M. Troyer,et al.  Simultaneous dimerization and SU(4) symmetry breaking of 4-color fermions on the square lattice. , 2011, Physical review letters.

[11]  J I Cirac,et al.  Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. , 2008, Physical review letters.

[12]  Philip W. Anderson,et al.  Resonating valence bonds: A new kind of insulator? , 1973 .

[13]  Xiao-Gang Wen,et al.  Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.

[14]  Umesh Vazirani,et al.  Rigorous RG Algorithms and Area Laws for Low Energy Eigenstates in 1D , 2016, Communications in Mathematical Physics.

[15]  Michael Marien,et al.  Anyons and matrix product operator algebras , 2015, 1511.08090.

[16]  M. Sanz,et al.  Matrix product states: Symmetries and two-body Hamiltonians , 2009, 0901.2223.

[17]  Bruno Nachtergaele The spectral gap for some spin chains with discrete symmetry breaking , 1996 .

[18]  M. Aguado,et al.  Explicit tensor network representation for the ground states of string-net models , 2008, 0809.2393.

[19]  Michael Marien,et al.  Matrix product operators for symmetry-protected topological phases , 2014, 1412.5604.

[20]  Garnet Kin-Lic Chan,et al.  Stripe order in the underdoped region of the two-dimensional Hubbard model , 2016, Science.

[21]  Mikel Sanz,et al.  A Quantum Version of Wielandt's Inequality , 2009, IEEE Transactions on Information Theory.

[22]  O. Buerschaper Twisted injectivity in projected entangled pair states and the classification of quantum phases , 2013, 1307.7763.

[23]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[24]  D Porras,et al.  Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.

[25]  J. Cirac,et al.  Entanglement, fractional magnetization, and long-range interactions , 2012, 1209.3898.

[26]  J. Ignacio Cirac,et al.  Approximating Gibbs states of local Hamiltonians efficiently with projected entangled pair states , 2014, 1406.2973.

[27]  Matthias Troyer,et al.  Competing states in the t-J model: uniform D-wave state versus stripe state. , 2014, Physical review letters.

[28]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[29]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[30]  Xiao-Gang Wen,et al.  Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions , 2008 .

[31]  D. Perez-Garcia,et al.  Matrix Product Density Operators: Renormalization Fixed Points and Boundary Theories , 2016, 1606.00608.

[32]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[33]  B. Normand,et al.  Tensor renormalization of quantum many-body systems using projected entangled simplex states , 2013, 1307.5696.

[34]  J. Ignacio Cirac,et al.  Chiral topological spin liquids with projected entangled pair states , 2015, 1504.05236.

[35]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[36]  Frank Pollmann,et al.  Entanglement spectrum of a topological phase in one dimension , 2009, 0910.1811.

[37]  E. Lieb,et al.  Valence bond ground states in isotropic quantum antiferromagnets , 1988 .

[38]  M. Nagata On the nilpotency of nil-algebras. , 1952 .

[39]  M. B. Hastings,et al.  Solving gapped Hamiltonians locally , 2006 .

[40]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[41]  F. Verstraete,et al.  Valence-bond states for quantum computation , 2003, quant-ph/0311130.

[42]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[43]  D. Pérez-García,et al.  PEPS as ground states: Degeneracy and topology , 2010, 1001.3807.

[44]  Xiao-Gang Wen,et al.  Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations , 2011, 1106.4752.

[45]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[46]  Umesh Vazirani,et al.  An area law and sub-exponential algorithm for 1D systems , 2013, 1301.1162.

[47]  Norbert Schuch,et al.  Characterizing Topological Order with Matrix Product Operators , 2014, Annales Henri Poincaré.

[48]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[49]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.