On the foundations of final coalgebra semantics: non-well-founded sets, partial orders, metric spaces

This paper, a revised version of Rutten and Turi (1993), is part of a programme aiming at formulating a mathematical theory of structural operational semantics to complement the established theory of domains and denotational semantics to form a coherent whole (Turi 1996; Turi and Plotkin 1997). The programme is based on a suitable interplay between the induction principle, which pervades modern mathematics, and a dual, non-standard ‘coinduction principle’, which underlies many of the recursive phenomena occurring in computer science.The aim of the present survey is to show that the elementary categorical notion of a final coalgebra is a suitable foundation for such a coinduction principle. The properties of coalgebraic coinduction are studied both at an abstract categorical level and in some specific categories used in semantics, namely categories of non-well-founded sets, partial orders and metric spaces.

[1]  F. Honsell,et al.  Set theory with free construction principles , 1983 .

[2]  Jan J. M. M. Rutten,et al.  On the Foundation of Final Semantics: Non-Standard Sets, Metric Spaces, Partial Orders , 1992, REX Workshop.

[3]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[4]  G. M. Kelly Elementary observations on 2-categorical limits , 1989, Bulletin of the Australian Mathematical Society.

[5]  H.-J. Hoehnke,et al.  Manes, E. G., Algebraic Theories, Berlin‐Heidelberg‐New York. Springer‐Verlag. 1976. IX, 356 S., DM 55,70. US $ 22.20. (Graduate Texts in Mathematics 26) , 1978 .

[6]  Gordon D. Plotkin,et al.  An axiomatisation of computationally adequate domain theoretic models of FPC , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[7]  F. W. Lawvere Variable Quantities and Variable Structures in Topoi , 1976 .

[8]  Kim R. Wagner,et al.  Solving Recursive Domain Equations with Enriched Categories. , 1994 .

[9]  Gordon D. Plotkin,et al.  The Category-Theoretic Solution of Recursive Domain Equations (Extended Abstract) , 1977, FOCS.

[10]  A. R. D. Mathias,et al.  NON‐WELL‐FOUNDED SETS (CSLI Lecture Notes 14) , 1991 .

[11]  Chrysafis Hartonas Semantics of Finite Delay , 1997, Theor. Comput. Sci..

[12]  Furio Honsell,et al.  Final Semantics for untyped lambda-calculus , 1995, TLCA.

[13]  Gordon D. Plotkin,et al.  The category-theoretic solution of recursive domain equations , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[14]  Andrew M. Pitts,et al.  Computational Adequacy via "Mixed" Inductive Definitions , 1993, MFPS.

[15]  Jan J. M. M. Rutten,et al.  On the Foundations of Final Coalgebra Semantics , 1998, Mathematical Structures in Computer Science.

[16]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[17]  Daniele Turi,et al.  Axiomatic domain theory in categories of partial maps , 1998 .

[18]  J. Barwise,et al.  The Liar: An Essay on Truth and Circularity , 1987 .

[19]  Andrew M. Pitts,et al.  A co-Induction Principle for Recursively Defined Domains , 1994, Theor. Comput. Sci..

[20]  Peter Aczel,et al.  Final Universes of Processes , 1993, MFPS.

[21]  Michael A. Arbib,et al.  Parametrized Data Types Do Not Need Highly Constrained Parameters , 1982, Inf. Control..

[22]  P. Freyd Algebraically complete categories , 1991 .

[23]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[24]  Gordon D. Plotkin,et al.  Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[25]  Lawrence C. Paulson,et al.  A Concrete Final Coalgebra Theorem for ZF Set Theory , 1994, TYPES.

[26]  Daniele Turi,et al.  Categorical Modelling of Structural Operational Rules: Case Studies , 1997, Category Theory and Computer Science.

[27]  Ieke Moerdijk,et al.  Algebraic set theory , 1995 .

[28]  S. Abramsky The lazy lambda calculus , 1990 .

[29]  S. Lane Mathematics, Form and Function , 1985 .

[30]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[31]  向井 国昭 Constraint logic programming and the unification of information , 1991 .

[32]  Marcello M. Bonsangue,et al.  Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding , 1995, Theor. Comput. Sci..

[33]  Glynn Winskel,et al.  Bisimulation and open maps , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[34]  Erik P. de Vink,et al.  Control flow semantics , 1996 .

[35]  Michael B. Smyth,et al.  Quasi Uniformities: Reconciling Domains with Metric Spaces , 1987, MFPS.

[36]  Ronald Regan Basic Set Theory , 2000 .

[37]  P. J. Freyd Applications of Categories in Computer Science: Remarks on algebraically compact categories , 1992 .

[38]  R. Labrecque The Correspondence Theory , 1978 .

[39]  Samson Abramsky,et al.  A Domain Equation for Bisimulation , 1991, Inf. Comput..

[40]  José Meseguer,et al.  Temporal Structures , 1989, Mathematical Structures in Computer Science.

[41]  Jan J. M. M. Rutten,et al.  Initial Algebra and Final Coalgebra Semantics for Concurrency , 1993, REX School/Symposium.

[42]  Jan J. M. M. Rutten,et al.  Elements of Generalized Ultrametric Domain Theory , 1996, Theor. Comput. Sci..

[43]  Anne Dicky,et al.  An Algebraic Characterization of Transition System Equivalences , 1989, Inf. Comput..

[44]  A Non-well-founded Sets Semantics for Observation Congruence over Full CCS , 1994 .

[45]  Ralph Kopperman,et al.  Continuity Spaces: Reconciling Domains and Metric Spaces , 1997, Theor. Comput. Sci..

[46]  Peter Aczel,et al.  A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.

[47]  Peter J. Freyd,et al.  Recursive types reduced to inductive types , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[48]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[49]  Marcelo P. Fiore,et al.  A coinduction principle for recursive data types based on bisimulation , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[50]  Pierre America,et al.  Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1987, J. Comput. Syst. Sci..

[51]  D. Turi,et al.  Functional Operational Semantics and its Denotational Dual , 1996 .

[52]  Marcelo P. Fiore Axiomatic domain theory in categories of partial maps , 1994 .