An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets

Colloidal nanoplatelets are atomically flat, quasi-two-dimensional sheets of semiconductor that can exhibit efficient, spectrally pure fluorescence. Despite intense interest in their properties, the mechanism behind their highly anisotropic shape and precise atomic-scale thickness remains unclear, and even counterintuitive for commonly studied nanoplatelets that arise from isotropic crystal structures (such as zincblende CdSe and lead-halide perovskites). Here we show that an intrinsic instability in growth kinetics can lead to such highly anisotropic shapes. By combining experimental results on the synthesis of CdSe nanoplatelets with theory predicting enhanced growth on narrow surface facets, we develop a model that explains nanoplatelet formation as well as observed dependencies on time and temperature. Based on standard concepts of volume, surface, and edge energies, the resulting growth instability criterion can be directly applied to other crystalline materials. Thus, knowledge of this previously unknown mechanism for controlling shape at the nanoscale can lead to broader libraries of quasi-two-dimensional materials.

[1]  Benoit Dubertret,et al.  Quasi‐2D Colloidal Semiconductor Nanoplatelets for Narrow Electroluminescence , 2014 .

[2]  M. Artemyev,et al.  Temperature dependent radiative and non-radiative recombination dynamics in CdSe-CdTe and CdTe-CdSe type II hetero nanoplatelets. , 2016, Physical chemistry chemical physics : PCCP.

[3]  R. Reid,et al.  Modeling crystal growth rates from solution , 1973 .

[4]  Claudio Canale,et al.  Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control up to the Micrometer Range , 2016, Journal of the American Chemical Society.

[5]  Robin D. Rogers,et al.  Green industrial applications of ionic liquids , 2002 .

[6]  H. Rohrs,et al.  The Magic-Size Nanocluster (CdSe)34 as a Low-Temperature Nucleant for Cadmium Selenide Nanocrystals; Room-Temperature Growth of Crystalline Quantum Platelets , 2014, Chemistry of materials : a publication of the American Chemical Society.

[7]  Dmitri V Talapin,et al.  Low-threshold stimulated emission using colloidal quantum wells. , 2013, Nano letters.

[8]  Jung Ho Yu,et al.  Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. , 2006, Journal of the American Chemical Society.

[9]  S. Bals,et al.  Conformal and Atomic Characterization of Ultrathin CdSe Platelets with a Helical Shape , 2014, Nano letters.

[10]  Yuanyuan Wang,et al.  Two-dimensional semiconductor nanocrystals: properties, templated formation, and magic-size nanocluster intermediates. , 2015, Accounts of chemical research.

[11]  Zubin B. Kuvadia,et al.  Spiral Growth Model for Faceted Crystals of Non-Centrosymmetric Organic Molecules Grown from Solution , 2011 .

[12]  Yadong Li,et al.  Shape control of CdSe nanocrystals with zinc blende structure. , 2009, Journal of the American Chemical Society.

[13]  Alex Zunger,et al.  Accurate prediction of defect properties in density functional supercell calculations , 2009 .

[14]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[15]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[16]  A Paul Alivisatos,et al.  Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. , 2015, Journal of the American Chemical Society.

[17]  Pooja Tyagi,et al.  Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement. , 2015, The journal of physical chemistry letters.

[18]  Sandrine Ithurria,et al.  Carrier cooling in colloidal quantum wells. , 2012, Nano letters.

[19]  M. Nasilowski,et al.  Two-Dimensional Colloidal Nanocrystals. , 2016, Chemical reviews.

[20]  J. Trotter,et al.  Crystal and molecular structure of cadmium diacetate dihydrate , 1972 .

[21]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[22]  Giovanni Bertoni,et al.  Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control , 2016, Journal of the American Chemical Society.

[23]  Pantelides,et al.  First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe. , 1993, Physical review. B, Condensed matter.

[24]  Andreas Kornowski,et al.  Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment , 2010, Science.

[25]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[26]  Yang Ren,et al.  Structure Identification of Two-Dimensional Colloidal Semiconductor Nanocrystals with Atomic Flat Basal Planes. , 2015, Nano letters.

[27]  B. Dubertret,et al.  Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. , 2011, Journal of the American Chemical Society.

[28]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[29]  Haiyan Qin,et al.  Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties , 2012, Nano Reseach.

[30]  W. H. Weinberg,et al.  Theoretical foundations of dynamical Monte Carlo simulations , 1991 .

[31]  Savas Delikanli,et al.  Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets. , 2015, ACS nano.

[32]  Benoit Dubertret,et al.  Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. , 2008, Journal of the American Chemical Society.

[33]  Kink Rate Model for the General Case of Organic Molecular Crystals , 2014 .

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  Benoit Dubertret,et al.  Electrolyte-gated field effect transistor to probe the surface defects and morphology in films of thick CdSe colloidal nanoplatelets. , 2014, ACS nano.

[36]  Savas Delikanli,et al.  Experimental Determination of the Absorption Cross-Section and Molar Extinction Coefficient of Colloidal CdSe Nanoplatelets , 2015 .

[37]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[38]  Jung Ho Yu,et al.  Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. , 2009, Angewandte Chemie.

[39]  Andrei Schliwa,et al.  Electronic structure and exciton-phonon interaction in two-dimensional colloidal CdSe nanosheets. , 2012, Nano letters.

[40]  S. Erwin,et al.  Microscopic theory of cation exchange in CdSe nanocrystals. , 2014, Physical review letters.

[41]  S. Russo,et al.  Density-functional theory studies of pyrite FeS2(100) and (110) surfaces , 2002 .

[42]  B. Dubertret,et al.  Colloidal nanoplatelets with two-dimensional electronic structure. , 2011, Nature materials.

[43]  Michael F. Doherty,et al.  Predictive Modeling of Supersaturation-Dependent Crystal Shapes , 2012 .

[44]  R. Betz,et al.  Crystal Structure of Iron(II) Acetate , 2011 .

[45]  Hui Zhang,et al.  Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids. , 2015, Nature materials.

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[48]  B. Nadal,et al.  Optimized Synthesis of CdTe Nanoplatelets and Photoresponse of CdTe Nanoplatelets Films , 2013 .

[49]  Piernicola Spinicelli,et al.  Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. , 2014, Nano letters.

[50]  Nguyen T. K. Thanh,et al.  Mechanisms of nucleation and growth of nanoparticles in solution. , 2014, Chemical reviews.

[51]  Andrea R. Browning,et al.  Crystal Shape Engineering , 2008 .

[52]  Benoit Dubertret,et al.  Two-Dimensional Growth of CdSe Nanocrystals, from Nanoplatelets to Nanosheets , 2013 .

[53]  Benoit Dubertret,et al.  Core/shell colloidal semiconductor nanoplatelets. , 2012, Journal of the American Chemical Society.

[54]  P. C. Gibbons,et al.  Lamellar assembly of cadmium selenide nanoclusters into quantum belts. , 2011, Journal of the American Chemical Society.

[55]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[56]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[57]  Hilmi Volkan Demir,et al.  Stacking in colloidal nanoplatelets: tuning excitonic properties. , 2014, ACS nano.

[58]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[59]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.