Functional analysis of Plasmodium falciparum subpopulations associated with artemisinin resistance in Cambodia

[1]  Mehul Dhorda,et al.  The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study , 2017, The Lancet. Infectious diseases.

[2]  C. Rogier,et al.  A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. , 2016, The New England journal of medicine.

[3]  Zbynek Bozdech,et al.  Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai–Myanmar Border (2003–2013): The Role of Parasite Genetic Factors , 2016, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[4]  Saorin Kim,et al.  Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia , 2016, Malaria Journal.

[5]  J. Augereau,et al.  Plasmodium falciparum: multifaceted resistance to artemisinins , 2016, Malaria Journal.

[6]  Nicholas P. J. Day,et al.  Genomic epidemiology of artemisinin resistant malaria. , 2016, eLife.

[7]  B. Pradines,et al.  Tetracyclines in malaria , 2015, Malaria Journal.

[8]  L. Cui,et al.  Artemisinin Resistance at the China-Myanmar Border and Association with Mutations in the K13 Propeller Gene , 2015, Antimicrobial Agents and Chemotherapy.

[9]  Yu Xue,et al.  Analysis of phosphorylation sites on autophagy proteins , 2015, Protein & Cell.

[10]  D. Peeper,et al.  Two-way communication between the metabolic and cell cycle machineries: the molecular basis , 2015, Cell cycle.

[11]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[12]  Shui-sen Zhou,et al.  A Single Mutation in K13 Predominates in Southern China and Is Associated With Delayed Clearance of Plasmodium falciparum Following Artemisinin Treatment. , 2015, The Journal of infectious diseases.

[13]  S. Han,et al.  Molecular assessment of artemisinin resistance markers, polymorphisms in the k13 propeller, and a multidrug-resistance gene in the eastern and western border areas of Myanmar. , 2015, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[14]  Scott Emrich,et al.  A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria , 2015, Nature.

[15]  R. Maude,et al.  Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker , 2015, The Lancet. Infectious diseases.

[16]  Zbynek Bozdech,et al.  TARGETING THE CELL STRESS RESPONSE OF PLASMODIUM FALCIPARUM TO OVERCOME ARTEMISININ RESISTANCE , 2015 .

[17]  Liam J. McGuffin,et al.  IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences , 2015, Nucleic Acids Res..

[18]  N. Nelson,et al.  Plasmodium falciparum chloroquine resistance transporter is a H+-coupled polyspecific nutrient and drug exporter , 2015, Proceedings of the National Academy of Sciences.

[19]  Gilean McVean,et al.  Genetic architecture of artemisinin-resistant Plasmodium falciparum , 2015, Nature Genetics.

[20]  John C. Tan,et al.  Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. , 2015, The Journal of infectious diseases.

[21]  D. Kwiatkowski,et al.  Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance , 2015, Science.

[22]  Davide Heller,et al.  STRING v10: protein–protein interaction networks, integrated over the tree of life , 2014, Nucleic Acids Res..

[23]  Shulin Wang,et al.  Autophagy prevents autophagic cell death of Tetrahymena in response to oxidative stress , 2008, Dong wu xue yan jiu = Zoological research.

[24]  D. Kwiatkowski,et al.  Spread of artemisinin resistance in Plasmodium falciparum malaria. , 2014, The New England journal of medicine.

[25]  N. Khim,et al.  Artemisinin resistance in Plasmodium falciparum. , 2014, The Lancet. Infectious diseases.

[26]  B. Genton,et al.  A molecular marker of artemisinin-resistant Plasmodium falciparum malaria , 2013, Nature.

[27]  Pardis C Sabeti,et al.  Malaria life cycle intensifies both natural selection and random genetic drift , 2013, Proceedings of the National Academy of Sciences.

[28]  Jordi Mestres,et al.  Prediction of the P. falciparum Target Space Relevant to Malaria Drug Discovery , 2013, PLoS Comput. Biol..

[29]  Andrew M. Gross,et al.  Network-based stratification of tumor mutations , 2013, Nature Methods.

[30]  Gilean McVean,et al.  Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia , 2013, Nature Genetics.

[31]  Bernhard Mlecnik,et al.  CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data , 2013, Bioinform..

[32]  A. Matsuura,et al.  The Role of Autophagy in Genome Stability through Suppression of Abnormal Mitosis under Starvation , 2013, PLoS genetics.

[33]  J. Rathmell,et al.  Metabolic stress in autophagy and cell death pathways. , 2012, Cold Spring Harbor perspectives in biology.

[34]  D. Baker,et al.  The role of cGMP signalling in regulating life cycle progression of Plasmodium , 2012, Microbes and infection.

[35]  Jian Peng,et al.  Template-based protein structure modeling using the RaptorX web server , 2012, Nature Protocols.

[36]  John C. Tan,et al.  Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing , 2012, Nature.

[37]  S. Briolant,et al.  The F423Y Mutation in the pfmdr2 Gene and Mutations N51I, C59R, and S108N in the pfdhfr Gene Are Independently Associated with Pyrimethamine Resistance in Plasmodium falciparum Isolates , 2012, Antimicrobial Agents and Chemotherapy.

[38]  Toshihiro Mita,et al.  Evolution of Plasmodium falciparum drug resistance: implications for the development and containment of artemisinin resistance. , 2012, Japanese journal of infectious diseases.

[39]  A. Tobin,et al.  Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. , 2011, Nature communications.

[40]  N. Mizushima,et al.  The role of Atg proteins in autophagosome formation. , 2011, Annual review of cell and developmental biology.

[41]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[42]  Guido Kroemer,et al.  Autophagy and the integrated stress response. , 2010, Molecular cell.

[43]  Y. Li,et al.  Artemisinin Directly Targets Malarial Mitochondria through Its Specific Mitochondrial Activation , 2010, PloS one.

[44]  Liam J. McGuffin,et al.  Rapid model quality assessment for protein structure predictions using the comparison of multiple models without structural alignments , 2010, Bioinform..

[45]  C. Molyneux,et al.  The economic costs of malaria in four Kenyan districts: do household costs differ by disease endemicity? , 2010, Malaria Journal.

[46]  Toshihiro Mita,et al.  Spread and evolution of Plasmodium falciparum drug resistance. , 2009, Parasitology international.

[47]  K. Silamut,et al.  Artemisinin resistance in Plasmodium falciparum malaria. , 2009, The New England journal of medicine.

[48]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[49]  Pornpimol Charoentong,et al.  ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks , 2009, Bioinform..

[50]  Eileen Kraemer,et al.  PlasmoDB: a functional genomic database for malaria parasites , 2008, Nucleic Acids Res..

[51]  J. Klar,et al.  Cyclic nucleotide-specific phosphodiesterases of Plasmodium falciparum: PfPDEalpha, a non-essential cGMP-specific PDE that is an integral membrane protein. , 2008, International journal for parasitology.

[52]  N. Day,et al.  Doxycycline versus Azithromycin for Treatment of Leptospirosis and Scrub Typhus , 2007, Antimicrobial Agents and Chemotherapy.

[53]  Sitao Wu,et al.  LOMETS: A local meta-threading-server for protein structure prediction , 2007, Nucleic acids research.

[54]  C. Davies,et al.  High-Level Chromosomally Mediated Tetracycline Resistance in Neisseria gonorrhoeae Results from a Point Mutation in the rpsJ Gene Encoding Ribosomal Protein S10 in Combination with the mtrR and penB Resistance Determinants , 2005, Antimicrobial Agents and Chemotherapy.

[55]  J. Skolnick,et al.  TM-align: a protein structure alignment algorithm based on the TM-score , 2005, Nucleic acids research.

[56]  K. Kirk,et al.  Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance , 2005, Molecular microbiology.

[57]  I. Hastings The origins of antimalarial drug resistance. , 2004, Trends in parasitology.

[58]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[59]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[60]  J. Duchemin,et al.  Metapopulation concepts applied to falciparum malaria and their impacts on the emergence and spread of chloroquine resistance. , 2003, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[61]  J. T. Williams,et al.  Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. , 2000, Molecular biology and evolution.

[62]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[63]  T. Triglia,et al.  Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Payne Did medicated salt hasten the spread of chloroquine resistance in Plasmodium falciparum? , 1988, Parasitology today.

[65]  S. Wright,et al.  The Theoretical Variance within and among Subdivisions of a Population That Is in a Steady State. , 1952, Genetics.