Developing and evaluating a hybrid wind instrument

A hybrid wind instrument generates self-sustained sounds via a real-time interaction between a computed excitation model (such as the physical model of human lips interacting with a mouthpiece) and a real acoustic resonator. Attempts to produce a hybrid instrument have so far fallen short, in terms of both the accuracy and the variation in the sound produced. The principal reason for the failings of previous hybrid instruments is the actuator which, controlled by the excitation model, introduces a fluctuating component into the air flow injected into the resonator. In the present paper, the possibility of using a loudspeaker to supply the calculated excitation signal is evaluated. A theoretical study has facilitated the modeling of the loudspeaker-resonator system and the design of a feedback and feedforward filter to successfully compensate for the presence of the loudspeaker. The resulting self-sustained sounds are evaluated by a mapping of their sound descriptors to the input parameters of the physical model of the embouchure, both for sustained and attack sounds. Results are compared with simulations. The largely coherent functioning confirms the usefulness of the device in both musical and research contexts.

[1]  Peter John Chapman,et al.  Thermal Simulation of Loudspeakers , 1998 .

[2]  A. Chaigne,et al.  Acoustique des instruments de musique , 2008 .

[3]  Christophe Vergez,et al.  A hybrid reed instrument: an acoustical resonator with a numerically simulated mouthpiece , 2012 .

[4]  Edgar Joseph Berdahl Applications of feedback control to musical instrumentdesign , 2010 .

[5]  R. Kronland-Martinet,et al.  From Clarinet Control to Timbre Perception , 2010 .

[6]  G. Weinreich,et al.  Digital and analog bows: Hybrid mechanical-electrical systems , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  Patrick Susini,et al.  The Timbre Toolbox: extracting audio descriptors from musical signals. , 2011, The Journal of the Acoustical Society of America.

[8]  David B. Sharp,et al.  A single microphone capillary-based system for measuring the complex input impedance of musical wind instruments , 2011 .

[9]  Thierry Voinier,et al.  Real-time synthesis of clarinet-like instruments using digital impedance models. , 2005, The Journal of the Acoustical Society of America.

[10]  Acoustics , 2019, The SAGE Encyclopedia of Human Communication Sciences and Disorders.

[11]  René Caussé,et al.  An active mute for the trombone. , 2015, The Journal of the Acoustical Society of America.

[12]  A Avraham Hirschberg,et al.  Aero-acoustics of wind instruments , 1995 .

[13]  Federico Avanzini,et al.  Modelling the mechanical response of the Reed-mouthpiece-lip system of a clarinet. Part I. A one-dimensional distributed model , 2004 .

[14]  Henri Boutin Méthodes de contrôle actif d'instruments de musique. Cas de la lame de xylophone et du violon. , 2011 .

[15]  Jean-Pierre Dalmont,et al.  Some aspects of tuning and clean intonation in reed instruments , 1995 .

[16]  Richard H. Small,et al.  Direct Radiator Loudspeaker System Analysis , 1971 .

[17]  Joe Wolfe,et al.  The clarinet: how blowing pressure, lip force, lip position and reed "hardness" affect pitch, sound level, and spectrum. , 2013, The Journal of the Acoustical Society of America.

[18]  Jean Ourardand,et al.  Real-time Wave Separation in a Cylindrical Pipe with Applications to Reflectometry, Echo-cancellation, and a Hybrid Musical Instrument , 1998 .

[19]  Peter B. Pickett An Investigation of Active Tonal Spectrum Control as Applied to the Modern Trumpet , 1998 .

[20]  Finn Jacobsen,et al.  Propagation of sound waves in ducts , 2000 .

[21]  Anil Kumar Singh,et al.  OPERATING MODES OF THE CLARINET , 1973 .

[22]  Jean-Pierre Dalmont,et al.  Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses , 2004 .

[23]  Jean Guérard Modelisation numerique et simulation experimentale de systemes acoustique. Application aux instruments de musique , 1998 .

[24]  Lu Xia,et al.  Lead and lag compensators with complex poles and zeros design formulas for modeling and loop shaping , 2007, IEEE Control Systems.

[25]  Jean-Pierre Dalmont,et al.  Attack transients in a loudspeaker / resonator coupled system , 2010 .

[26]  Philippe Guillemain A Digital Synthesis Model of Double-Reed Wind Instruments , 2004, EURASIP J. Adv. Signal Process..

[27]  Wolfgang Klippel,et al.  Fast and Accurate Measurement of the Linear Transducer Parameters , 2001 .

[28]  Allan D. Pierce,et al.  Acoustics , 1989 .

[29]  Baptiste Chomette,et al.  Active Control of String Instruments using Xenomai , 2013 .

[30]  Noel Grand Etude du seuil d'oscillation des systemes acoustiques non-lineaires de type instrument a vent , 1994 .

[31]  R. T. Schumacher,et al.  ON THE OSCILLATIONS OF MUSICAL-INSTRUMENTS , 1983 .

[32]  John T. Scott,et al.  Fundamentals of musical acoustics , 1976 .

[33]  Jean-Pierre Dalmont,et al.  Nonlinear characteristics of single-reed instruments: quasistatic volume flow and reed opening measurements. , 2003, The Journal of the Acoustical Society of America.

[34]  Christophe Vergez,et al.  Interaction of reed and acoustic resonator in clarinetlike systems. , 2008, The Journal of the Acoustical Society of America.

[35]  D. Ferrand,et al.  Blowing machine for wind musical instrument : toward a real-time control of the blowing pressure , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[36]  Joe Wolfe,et al.  The effect of blowing pressure, lip force and tonguing on transients: A study using a clarinet-playing machine. , 2016, The Journal of the Acoustical Society of America.

[37]  J. Blauert,et al.  Group delay distortions in electroacoustical systems , 1978 .

[38]  Mathieu Barthet De l'interprète à l'auditeur: une analyse acoustique et perceptive du timbre musical , 2008 .

[39]  Baptiste Chomette,et al.  Modal PD state active control applied to a sim- plified string instrument , 2014 .