Assessment of single-channel algorithms for land surface temperature retrieval at two southern Brazil sites

Abstract. Land surface temperature (LST) is an essential parameter in investigating environmental, ecological processes and climate change, and thermal infrared remote sensing is a useful tool to acquire information regarding LST. Several accurate LST retrieval methodologies have been developed or refined in recent years and have demonstrated great potential. An assessment of various recent LST inversion single-channel (SC) algorithms is presented. These algorithms include improved mono-window, SC, and improved single channel (ISC). We compared the methods using two Brazilian sites, in which two kinds of validation were performed: field measurements with the satellite overpass and a comparative analysis using the web-based Atmospheric Correction Parameter Calculator tool and the radiative transfer equation (RTE) (assumed as reference). The three methods showed high coefficient of determination with the RTE (between 0.9 and 0.98). SC algorithm produced the furthest results from the reference and was statistically different. ISC algorithm provided the most reliable LST estimates, yielding root mean square errors between 1.53 and 1.91 K. LST can be retrieved through ISC algorithm only using meteorological station data, thus being an alternative for regions where radiosonde points have low density. Our findings contribute to more operational LST products from the Landsat series in humid places.

[1]  Silvia Beatriz Alves Rolim,et al.  Land Surface Temperature Retrieval by LANDSAT 8 Thermal Band: Applications of Laboratory and Field Measurements , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[2]  Subhanil Guha,et al.  Analytical study of seasonal variability in land surface temperature with normalized difference vegetation index, normalized difference water index, normalized difference built-up index, and normalized multiband drought index , 2019, Journal of Applied Remote Sensing.

[3]  Bo-Hui Tang,et al.  Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product , 2019 .

[4]  T. M. Kuplich,et al.  Seasonal dynamics of vegetation indices as a criterion for grouping grassland typologies , 2019, Scientia Agricola.

[5]  Glynn C. Hulley,et al.  Atacama Field Campaign: laboratory and in-situ measurements for remote sensing applications , 2019, Int. J. Digit. Earth.

[6]  L. S. Pereira,et al.  Evapotranspiration of the Brazilian Pampa Biome: Seasonality and Influential Factors , 2018, Water.

[7]  F. M. Breunig,et al.  MODELING PINUS ELLIOTTII GROWTH WITH MULTITEMPORAL LANDSAT DATA: A STUDY CASE IN SOUTHERN BRAZIL , 2018, Boletim de Ciências Geodésicas.

[8]  John R. Schott,et al.  An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Juan C. Jiménez-Muñoz,et al.  An Improved Single-Channel Method to Retrieve Land Surface Temperature from the Landsat-8 Thermal Band , 2018, Remote. Sens..

[10]  Nektarios Chrysoulakis,et al.  Online Global Land Surface Temperature Estimation from Landsat , 2017, Remote. Sens..

[11]  Jorge Rosas,et al.  Sensitivity of Landsat 8 Surface Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in Dryland Irrigated Systems , 2017, Remote. Sens..

[12]  Clandio Favarini Ruviaro,et al.  Agricultural land use change in the Brazilian Pampa Biome: The reduction of natural grasslands , 2017 .

[13]  Matthew Montanaro,et al.  Derivation and Validation of the Stray Light Correction Algorithm for the Thermal Infrared Sensor Onboard Landsat 8 , 2017 .

[14]  Olivier Hagolle,et al.  A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data , 2016, Remote. Sens..

[15]  Feng Chen,et al.  Effect of emissivity uncertainty on surface temperature retrieval over urban areas: Investigations based on spectral libraries , 2016 .

[16]  Weimin Wang,et al.  Quantifying Spatial–Temporal Pattern of Urban Heat Island in Beijing: An Improved Assessment Using Land Surface Temperature (LST) Time Series Observations From LANDSAT, MODIS, and Chinese New Satellite GaoFen-1 , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[17]  Zhaoming Zhang,et al.  Towards an operational method for land surface temperature retrieval from Landsat 8 data , 2016 .

[18]  Roberta Anniballe,et al.  Downscaling Landsat Land Surface Temperature over the urban area of Florence , 2016 .

[19]  Juan C. Jiménez-Muñoz,et al.  Spatial analysis of the homogeneity of the land surface temperature in three Spanish test sites , 2015 .

[20]  José A. Sobrino,et al.  Global Atmospheric Profiles from Reanalysis Information (GAPRI): a new database for earth surface temperature retrieval , 2015 .

[21]  John Kochendorfer,et al.  Comparison of in-situ, aircraft, and satellite land surface temperature measurements over a NOAA Climate Reference Network site , 2015 .

[22]  Fei Wang,et al.  An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data , 2015, Remote. Sens..

[23]  Shaohua Zhao,et al.  A Practical Split-Window Algorithm for Estimating Land Surface Temperature from Landsat 8 Data , 2015, Remote. Sens..

[24]  John R. Schott,et al.  Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration , 2014, Remote. Sens..

[25]  Matthew Montanaro,et al.  Stray Light Artifacts in Imagery from the Landsat 8 Thermal Infrared Sensor , 2014, Remote. Sens..

[26]  Xiaolei Yu,et al.  Land Surface Temperature Retrieval from Landsat 8 TIRS - Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method , 2014, Remote. Sens..

[27]  Juan C. Jiménez-Muñoz,et al.  Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data , 2014, IEEE Geoscience and Remote Sensing Letters.

[28]  F. Gao,et al.  Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data , 2014 .

[29]  S. Cechin,et al.  The role of phytophysiognomies and seasonality on the structure of ground-dwelling anuran (Amphibia) in the Pampa biome, Southern Brazil. , 2013, Anais da Academia Brasileira de Ciencias.

[30]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[31]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[32]  V. Caselles,et al.  Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data , 2012 .

[33]  Ning Zhang,et al.  Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis - A case study in Tengchong, China , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[34]  Simon J. Hook,et al.  Intercomparison of versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia , 2009 .

[35]  José A. Sobrino,et al.  Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature , 2009 .

[36]  Antonio J. Plaza,et al.  Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[37]  John R. Schott,et al.  Validation of a web-based atmospheric correction tool for single thermal band instruments , 2005, SPIE Optics + Photonics.

[38]  Joan M. Galve,et al.  Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data , 2005 .

[39]  Simon J. Hook,et al.  Mapping variations in weight percent silica measured from multispectral thermal infrared imagery - Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico , 2005 .

[40]  José A. Sobrino,et al.  Land surface temperature retrieval from LANDSAT TM 5 , 2004 .

[41]  J. Sobrino,et al.  A generalized single‐channel method for retrieving land surface temperature from remote sensing data , 2003 .

[42]  T. Oke,et al.  Thermal remote sensing of urban climates , 2003 .

[43]  A. Karnieli,et al.  A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region , 2001 .

[44]  José A. Sobrino,et al.  Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco , 2000 .

[45]  J. Salisbury,et al.  Thermal-infrared remote sensing and Kirchhoff's law: 2. Field measurements , 1999 .

[46]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[47]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[48]  José A. Sobrino,et al.  Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data , 1996 .

[49]  J. Salisbury,et al.  Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity. , 1996, Applied optics.

[50]  Elisa T. Lee,et al.  Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.

[51]  Alfred J Prata,et al.  Land surface temperature determination from satellites , 1994 .

[52]  Manfred Owe,et al.  On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces , 1993 .

[53]  W. Emery,et al.  Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology , 1989 .

[54]  野村栄一,et al.  2 , 1900, The Hatak Witches.

[55]  Kansuma Burapapol,et al.  Landsat 8 OLI(Operational Land Imager)を用いたタイ北部、スリランナ国立公園 における可燃林床葉量の空間分布 , 2016 .

[56]  Peter Beike,et al.  Beyond Anova Basics Of Applied Statistics , 2016 .

[57]  Zhao-Liang Li,et al.  Quantitative Remote Sensing in Thermal Infrared: Theory and Applications , 2014 .

[58]  F. Quadros,et al.  Morfogênese de gramíneas nativas do Rio Grande do Sul (Brasil) submetidas a pastoreio rotativo durante primavera e verão , 2014 .

[59]  Copertino Comparison of algorithms to retrieve Land Surface Temperature from LANDSAT-7 ETM+ IR data in the Basilicata Ionian band , 2012 .

[60]  Christopher O. Justice,et al.  Land remote sensing and global environmental change : NASA's earth observing system and the science of ASTER and MODIS , 2011 .

[61]  Juan C. Jiménez-Muñoz,et al.  A Single-Channel Algorithm for Land-Surface Temperature Retrieval From ASTER Data , 2010, IEEE Geoscience and Remote Sensing Letters.

[62]  Vicente Caselles,et al.  Validation of Landsat-7/ETM+ Thermal-Band Calibration and Atmospheric Correction With Ground-Based Measurements , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[63]  Zhao-Liang Li,et al.  MODIS Land Surface Temperature and Emissivity , 2010 .

[64]  Miquel Ninyerola,et al.  Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[65]  M. Iqbal An introduction to solar radiation , 1983 .