Superconducting Films in Perpendicular Fields and the Effect of the de Gennes Parameter

In this paper we study superconductivity of a thin film placed in a perpendicular magnetic field. We discuss the dependence of the upper critical field HC3 on the thickness l of the film and the Ginzburg--Landau parameter $\kappa$, and we examine nucleation of superconductivity. We show that a critical change occurs at $l=2\gamma\kappa^{-2}$. If $l>a\kappa^{-2}$ ($a>2\gamma$), the film exhibits type II behaviors: as the applied magnetic field decreases from $H_{C_3}$, superconductivity nucleates in a strip at the lateral surface and develops a lateral surface superconducting state. If $l\leq 2\g\kappa^{-2}+C\kappa^{-4}$, the film exhibits type I behaviors.

[1]  J. Rubinstein Six lectures on superconductivity , 1998 .

[2]  J. Rubinstein,et al.  Asymptotics for thin superconducting rings , 1998 .

[3]  Amandine Aftalion,et al.  ON THE SYMMETRY AND UNIQUENESS OF SOLUTIONS OF THE GINZBURG–LANDAU EQUATIONS FOR SMALL DOMAINS , 2000 .

[4]  Y. Almog Non-linear Surface Superconductivity for Type II Superconductors in the Large-Domain Limit , 2002 .

[5]  K. Lu,et al.  Ginzburg–Landau Equation with DeGennes Boundary Condition , 1996 .

[6]  Sam D. Howison,et al.  Macroscopic Models for Superconductivity , 1992, SIAM Rev..

[7]  B. Helffer,et al.  An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material , 1993 .

[8]  Xing-Bin Pan,et al.  Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity , 1999 .

[9]  Qiang Du,et al.  The bifurcation diagrams for the Ginzburg–Landau system of superconductivity , 2001 .

[10]  B. Helffer,et al.  Magnetic bottles for the Neumann problem: The case of dimension 3 , 2002 .

[11]  J. Rubinstein,et al.  Formation of topological defects in thin superconducting rings , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  G. Gustafson,et al.  Boundary Value Problems of Mathematical Physics , 1998 .

[13]  Patricia Bauman,et al.  Stable Nucleation for the Ginzburg-Landau System with an Applied Magnetic Field , 1998 .

[14]  P. Sternberg,et al.  Boundary Concentration for Eigenvalue Problems Related to the Onset of Superconductivity , 2000 .

[15]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[16]  Xingbin Pan Upper critical field for superconductors with edges and corners , 2002 .

[17]  Xingbin Pan Surface Superconductivity¶in Applied Magnetic Fields Above HC2 , 2002 .

[18]  Bernard Helffer,et al.  Upper critical field and location of surface nucleation of superconductivity , 2003 .

[19]  P. Gennes,et al.  Onset of superconductivity in decreasing fields , 1963 .

[20]  Giles Richardson,et al.  The mixed boundary condition for the Ginzburg Landau model in thin films , 2000, Appl. Math. Lett..

[21]  Andrew J. Bernoff,et al.  Onset of superconductivity in decreasing fields for general domains , 1998 .

[22]  Qiang Du,et al.  A model for variable thickness superconducting thin films , 1996 .

[23]  Zhiming Chen,et al.  Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model , 1998 .

[24]  S. Jimbo,et al.  Ginzburg-Landau equation with magnetic effect in a thin domain , 2002 .

[25]  Karl-Heinz Hoffman,et al.  Ginzburg-Landau Phase Transition Theory and Superconductivity , 2001 .

[26]  Qiang Du,et al.  A model for superconducting thin films having variable thickness , 1993 .

[27]  Daniel Phillips,et al.  The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model , 1999 .

[28]  Xing-Bin Pan,et al.  Surface Nucleation of Superconductivity in 3-Dimensions , 2000 .

[29]  Richard Montgomery,et al.  Hearing the zero locus of a magnetic field , 1995 .

[30]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[31]  Shmuel Agmon,et al.  Lectures on exponential decay of solutions of second order elliptic equations : bounds on eigenfunctions of N-body Schrödinger operators , 1983 .

[32]  G. Richardson,et al.  A one–dimensional model for superconductivity in a thin wire of slowly varying cross–section , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  Keng-Huat Kwek,et al.  Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains , 2002 .

[34]  B. Helffer,et al.  Magnetic Bottles in Connection with Superconductivity , 2001 .

[35]  Xing-Bin Pan,et al.  Gauge Invariant Eigenvalue Problems in ℝⁿ and in ℝⁿ , 1999 .

[36]  H. Jadallah The onset of superconductivity in a domain with a corner , 2001 .

[37]  P. Silverman,et al.  Type II superconductivity , 1969 .

[38]  Qiang Du,et al.  Critical Magnetic Field and Asymptotic Behavior of Superconducting Thin Films , 2002, SIAM J. Math. Anal..

[39]  S. Chapman Nucleation of superconductivity in decreasing fields. I , 1994, European Journal of Applied Mathematics.

[40]  Jacob Rubinstein,et al.  Bifurcation Analysis for Phase Transitions in Superconducting Rings with Nonuniform Thickness , 1998, SIAM J. Appl. Math..

[41]  Xing-Bin Pan,et al.  Eigenvalue problems of Ginzburg–Landau operator in bounded domains , 1999 .