Nanofuel as a potential secondary energy carrier

This paper presents a novel concept of nanofuel, pure energetic nanoparticles or suspensions of energetic nanoparticles in a liquid carrier, as a potential secondary energy carrier. Technological issues for the realization of the concept including nanofuel production, controlled ignition and combustion, oxidized particle capture and other related issues are described and key challenges are identified, which calls for a cross disciplinary collaboration from materials, chemistry, physics and engineering researchers.

[1]  Hwa-Chi Wang,et al.  Filtration efficiency of nanometer-size aerosol particles , 1991 .

[2]  Richard E. Smalley,et al.  Future Global Energy Prosperity: The Terawatt Challenge , 2005 .

[3]  S. Ganguli,et al.  Surface oxidation of iron nanoparticles , 2001 .

[4]  Norbert Auner,et al.  Silicon as energy carrier—Facts and perspectives , 2006 .

[5]  Stuart Anderson,et al.  Envirox™ fuel-borne catalyst: Developing and launching a nano-fuel additive , 2008, Technol. Anal. Strateg. Manag..

[6]  V. Utgikar,et al.  Nanometallic fuels for transportation: a well‐to‐wheels analysis , 2007 .

[7]  Mary Ann Curran,et al.  An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. , 2009, Environmental science & technology.

[8]  D. Wen On the role of structural disjoining pressure to boiling heat transfer of thermal nanofluids , 2008 .

[9]  A. Gromov,et al.  Characterization of Aluminum Powders I. Parameters of Reactivity of Aluminum Powders , 2002 .

[10]  S. D. Labinov,et al.  Solid-State Combustion of Metallic Nanoparticles: New Possibilities for an Alternative Energy Carrier , 2007 .

[11]  F. Stenger,et al.  Nanomilling in stirred media mills , 2005 .

[12]  K. Kuo,et al.  Ignition and combustion of boron particles in fluorine-containing environments , 2001 .

[13]  H. Krier,et al.  Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves , 2006 .

[14]  Björn A. Sandén,et al.  Energy Requirements of Carbon Nanoparticle Production , 2008 .

[15]  D. Wen,et al.  Experimental Investigation of the Oxidation of Tin Nanoparticles , 2009 .

[16]  M. Pantoya,et al.  Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3 , 2006 .

[17]  S. Linderoth,et al.  Oxidation of nanometer-sized iron particles , 1995 .

[18]  Yulong Ding,et al.  Pool Boiling Heat Transfer of Aqueous TiO 2 -Based Nanofluids , 2006 .

[19]  Geun-Hie Rim,et al.  The mechanism of combustion of superfine aluminum powders , 2003 .

[20]  L.J. Lee,et al.  Life Cycle Energy Analysis and Environmental Life Cycle Assessment of Carbon Nanofibers Production , 2007, Proceedings of the 2007 IEEE International Symposium on Electronics and the Environment.

[21]  Hiroshi Yamasaki,et al.  Recent advances in the combustion of water fuel emulsion , 2002 .

[22]  N. Vaganova,et al.  A strength model of heterogeneous ignition of metal particles , 1992 .

[23]  Charles W. Forsberg,et al.  Futures for hydrogen produced using nuclear energy , 2005 .

[24]  Kai Zhang,et al.  Review of nanofluids for heat transfer applications , 2009 .

[25]  I. Dincer,et al.  Life cycle assessment of hydrogen fuel cell and gasoline vehicles , 2006 .

[26]  Vigor Yang,et al.  Combustion of nano-aluminum and liquid water , 2007 .

[27]  A. Fedorov,et al.  Ignition of an Aluminum Particle , 2003 .

[28]  Nikhil Krishnan,et al.  A hybrid life cycle inventory of nano-scale semiconductor manufacturing. , 2008, Environmental science & technology.

[29]  V. Rosenband Thermo-mechanical aspects of the heterogeneous ignition of metals , 2004 .

[30]  Hsien Hui Khoo,et al.  An LCA study of a primary aluminum supply chain , 2005 .

[31]  D. Geldart Types of gas fluidization , 1973 .

[32]  Z. Guo,et al.  Oxidation investigation of nickel nanoparticles. , 2008, Physical chemistry chemical physics : PCCP.

[33]  N. Belousova,et al.  Reduction of aluminum oxide in a nonequilibrium hydrogen plasma , 2000 .

[34]  H. Krier,et al.  Evidence for the transition from the diffusion-limit in aluminum particle combustion , 2007 .

[35]  M. Zachariah,et al.  Understanding the mechanism of aluminium nanoparticle oxidation , 2006 .

[36]  K. P. Brooks,et al.  Dynamics of aluminum combustion , 1995 .

[37]  Dongsheng Wen,et al.  Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF) , 2008 .

[38]  K. W. Lee,et al.  Experimental study of aerosol filtration by fibrous filters , 1981 .

[39]  N. Eisenreich,et al.  On the Mechanism of Low Temperature Oxidation for Aluminum Particles down to the Nano-Scale , 2004 .

[40]  Eirik Nordheim,et al.  Sustainable development indicators of the European aluminium industry , 2007 .

[41]  D. Wen,et al.  Molecular dynamics simulation of the sintering of metallic nanoparticles , 2010 .

[42]  Christian Capello,et al.  Energy Consumption During Nanoparticle Production: How Economic is Dry Synthesis? , 2006 .

[43]  Mirko Schoenitz,et al.  Ignition of Aluminum Powders Under Different Experimental Conditions , 2005 .

[44]  C. Xie,et al.  Influence of humidity on the thermal behavior of aluminum nanopowders , 2006 .

[45]  Eberhard Meissner,et al.  The challenge to the automotive battery industry : the battery has to become an increasingly integrated component within the vehicle electric power system , 2005 .