Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering applications.

Reflectivity measurements of gold nanostructures graded in pitch and aperture size allow investigation of localized plasmons. A simple model confirmed by simulations explains the plasmon resonances. Such arrays are highly suitable Raman scattering substrates.

[1]  M. Shikida,et al.  Roughening of single-crystal silicon surface etched by KOH water solution , 1999 .

[2]  M. C. Netti,et al.  Confined plasmons in metallic nanocavities. , 2001, Physical review letters.

[3]  Jeremy J Baumberg,et al.  Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. , 2005, Nano letters.

[4]  T. Krauss,et al.  Real-space observation of ultraslow light in photonic crystal waveguides. , 2005, Physical review letters.

[5]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[6]  Robin L. Garrell,et al.  Surface-Enhanced Raman Spectroscopy of Aromatic Thiols and Disulfides on Gold Electrodes , 1998 .

[7]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[8]  J. Baumberg,et al.  Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces. , 2005, Physical review letters.

[9]  Susumu Noda,et al.  Fine-tuned high-Q photonic-crystal nanocavity. , 2005, Optics express.

[10]  Majd Zoorob,et al.  Visible-wavelength super-refraction in photonic crystal superprisms , 2004 .

[11]  J. R. Sambles,et al.  Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings , 1999 .

[12]  De‐Yin Wu,et al.  Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures , 2002 .

[13]  Jeremy J. Baumberg,et al.  Electrochemical SERS at a structured gold surface , 2005 .

[14]  Kitson,et al.  Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. , 1996, Physical review. B, Condensed matter.