Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents.

Potential applications of thin film metamaterials are diverse and their realization to offer miniaturized waveguides, antennas and shielding patterns are on anvil. These artificially engineered structures can produce astonishing electromagnetic responses because of their constituents being engineered at much smaller dimensions than the wavelength of the incident electromagnetic wave, hence behaving as artificial materials. Such micro-nano dimensions of thin film metamaterial structures can be customized for various applications due to their exclusive responses to not only electromagnetic, but also to acoustic and thermal waves that surpass the natural materials' properties. In this paper, the recent major advancements in the emerging fields of diagnostics (sensors) and therapeutics involving thin film metamaterials have been reviewed and underlined; discussing their edge over conventional counterpart techniques; concentrating on their design considerations and feasible ways of achieving them. Challenges faced in sensitivity, precision, accuracy and factors that interfere with the degree of performance of the sensors are also dealt with, herein.

[1]  David R. Smith,et al.  Negative refractive index metamaterials , 2006 .

[2]  Xunjun He,et al.  Thin-film sensor based tip-shaped split ring resonator metamaterial for microwave application , 2010 .

[3]  David R. Smith,et al.  Negative index material composed of electric and magnetic resonators , 2007 .

[4]  L. Terry,et al.  Development of a disposable pyruvate biosensor to determine pungency in onions (Allium cepa L.). , 2006, Biosensors & bioelectronics.

[5]  Joseph Wang,et al.  Electrochemical biosensors: towards point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.

[6]  F. Martín,et al.  Effective negative-/spl epsiv/ stopband microstrip lines based on complementary split ring resonators , 2004, IEEE Microwave and Wireless Components Letters.

[7]  Hui-Tian Wang,et al.  Tunable slow light in semiconductor metamaterial in a broad terahertz regime , 2010 .

[8]  Rolf Jakoby,et al.  Capacitive level monitoring of layered fillings in vessels using composite right/left-handed transmission lines , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[9]  Christian Debus,et al.  Frequency selective surfaces for high sensitivity terahertz sensing , 2007, 2104.05462.

[10]  S. Bhansali,et al.  Single-domain antibody based thermally stable electrochemical immunosensor. , 2016, Biosensors & bioelectronics.

[11]  Ferran Martín,et al.  Novel Sensors Based on the Symmetry Properties of Split Ring Resonators (SRRs) , 2011, Sensors.

[12]  C. Steinem,et al.  Piezoelectric Mass-Sensing Devices as Biosensors-An Alternative to Optical Biosensors? , 2000, Angewandte Chemie.

[13]  Kodo Kawase,et al.  Terahertz sensing method for protein detection using a thin metallic mesh , 2007 .

[14]  Shaibal Banerjee,et al.  Hazardous materials sensing: An electrical metamaterial approach , 2016 .

[15]  Christiane Ziegler Nanotechnologies for the biosciences , 2004 .

[16]  Martin Koch,et al.  Asymmetric planar terahertz metamaterials. , 2010, Optics express.

[17]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[18]  Rolf Jakoby,et al.  Sensor array based on split ring resonators for analysis of organic tissues , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[19]  Arda D. Yalcinkaya,et al.  An antenna-coupled split-ring resonator for biosensing , 2014 .

[20]  C. Gu,et al.  Visible transmission response of nanoscale complementary metamaterials for sensing applications , 2012, Nanotechnology.

[21]  G. Wang,et al.  SUPERFICIAL TUMOR HYPERTHERMIA WITH FLAT LEFT-HANDED METAMATERIAL LENS , 2009 .

[22]  Danijela Randjelovic,et al.  Adsorption–desorption noise in micromechanical resonant structures , 2002 .

[23]  Hilmi Volkan Demir,et al.  Metamaterial-based wireless RF-MEMS strain sensors , 2010, 2010 IEEE Sensors.

[24]  L. Vegni,et al.  Metamaterial-based sensor for hemoglobin measurements , 2012, 2012 Loughborough Antennas & Propagation Conference (LAPC).

[25]  Shekhar Bhansali,et al.  MEMS for biomedical applications , 2012 .

[26]  Willie J Padilla,et al.  Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications , 2010 .

[27]  K. Shankar,et al.  Selective microwave sensors exploiting the interaction of analytes with trap states in TiO2 nanotube arrays. , 2016, Nanoscale.

[28]  Evangelyn C. Alocilja,et al.  A Disposable Biosensor for Pathogen Detection in Fresh Produce Samples , 2004 .

[29]  Shekhar Bhansali,et al.  Electrochemical Sensing of Cortisol: A Recent Update , 2014, Applied Biochemistry and Biotechnology.

[30]  J. Bonache,et al.  Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines , 2005, IEEE Transactions on Microwave Theory and Techniques.

[31]  Manuel J. Freire,et al.  Metamaterial applicator for microwave hyperthermia , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.

[32]  Peidong Yang,et al.  Nanowire ultraviolet photodetectors and optical switches , 2002 .

[33]  David R. Smith,et al.  Negative refractive index in left-handed materials. , 2000, Physical review letters.

[34]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[35]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[36]  K. Nowak,et al.  Monitoring water content of rat lung tissuein vivo using microwave reflectometry , 2004, Medical and Biological Engineering and Computing.

[37]  Shekhar Bhansali,et al.  Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes. , 2015, Biosensors & bioelectronics.

[38]  S. Kale,et al.  Calibration and optimization of a metamaterial sensor for hybrid fuel detection , 2015, 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS).

[39]  Keith J. Rebello,et al.  Applications of MEMS in surgery , 2004, Proceedings of the IEEE.

[40]  A. Wisitsoraat,et al.  Real-time and label-free biosensing with microfluidic-based split-ring-resonator sensor , 2015, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO).

[41]  Andreas Janshoff,et al.  Piezoelectric Mass‐Sensing Devices as Biosensors — An Alternative to Optical Biosensors? , 2001 .

[42]  M. Samet,et al.  Parametric study on the dielectric properties of biological tissues , 2015, 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA).

[43]  M. Brandl,et al.  A Theoretical Design of a Biosensor Device Based on Split Ring Resonators for Operation in the Microwave Regime , 2015 .

[44]  P. Stauffer,et al.  Metamaterial Antenna Arrays for Improved Uniformity of Microwave Hyperthermia Treatments , 2016 .

[45]  T. Ramanathan,et al.  Electrical Properties of Biological Tissues - An Impedance Spectroscopy Study , 2006, 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena.

[46]  Lucio Vegni,et al.  Metamaterial biosensor for cancer detection , 2011, 2011 IEEE SENSORS Proceedings.

[47]  Zhen Tian,et al.  Modulating the fundamental inductive-capacitive resonance in asymmetric double-split ring terahertz metamaterials , 2011 .

[48]  Vladimir M. Shalaev,et al.  Optical Metamaterials: Fundamentals and Applications , 2009 .

[49]  T. Itoh,et al.  Promising Future of Metamaterials , 2012, IEEE Microwave Magazine.

[50]  Jingjing Yang,et al.  A Microring Resonator Based Negative Permeability Metamaterial Sensor , 2011, Sensors.

[51]  Jong-Gwan Yook,et al.  A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules , 2012 .

[52]  Martin Koch,et al.  Thin-film sensing with planar asymmetric metamaterial resonators , 2008 .

[53]  Jiří Homola,et al.  Multichannel surface plasmon resonance biosensor with wavelength division multiplexing , 2005 .

[54]  R. W. Lau,et al.  The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. , 1996, Physics in medicine and biology.

[55]  Woochang Lee,et al.  Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. , 2004, Journal of biotechnology.

[56]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[57]  R. Jakoby,et al.  Metamaterial Inspired Microwave Sensors , 2012, IEEE Microwave Magazine.

[58]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[59]  D. Abbott,et al.  Displacement Sensor Based on Diamond-Shaped Tapered Split Ring Resonator , 2013, IEEE Sensors Journal.

[60]  A. Bosserhoff,et al.  Label-Free Probing of the Binding State of DNA by Time-Domain Terahertz Sensing , 2000 .

[61]  R. V. Van Duyne,et al.  Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. , 2005, Journal of the American Chemical Society.

[62]  S. Ramakrishna,et al.  Physics of negative refractive index materials , 2005 .

[63]  Liangping Xia,et al.  Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial , 2016, IEEE Photonics Technology Letters.

[64]  Ji Zhou,et al.  Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator , 2016 .

[65]  N. Pourmand,et al.  Label-Free Impedance Biosensors: Opportunities and Challenges. , 2007, Electroanalysis.

[66]  Label-free probing of the binding state of DNA by time-domain THz sensing , 2000 .

[67]  Study of asymmetric U-shaped resonator at terahertz frequencies , 2016 .

[68]  Fu-Chieh Chang,et al.  A Novel design of Antenna for biosensing applications , 2012 .

[69]  David Erickson,et al.  Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale , 2008, Microfluidics and nanofluidics.

[70]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[71]  Omar M. Ramahi,et al.  Material Characterization Using Complementary Split-Ring Resonators , 2012, IEEE Transactions on Instrumentation and Measurement.

[72]  Gang Wang,et al.  Conformal Hyperthermia of Superficial Tumor With Left-Handed Metamaterial Lens Applicator , 2012, IEEE Transactions on Biomedical Engineering.

[73]  H. Asai,et al.  Emission of Circularly Polarized Terahertz Wave From Inhomogeneous Intrinsic Josephson Junctions , 2016, IEEE Transactions on Applied Superconductivity.

[74]  Derek Abbott,et al.  High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization , 2014, IEEE Sensors Journal.

[75]  Mohammad-Reza Tofighi Sensor Array Based on Split Ring Resonators for Analysis of Organic Tissues , 2011 .

[76]  L. Murphy,et al.  Biosensors and bioelectrochemistry. , 2006, Current opinion in chemical biology.

[77]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[78]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[79]  J. Pendry,et al.  Metamaterials in the sunshine , 2006, Nature materials.

[80]  Li Wang,et al.  Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor. , 2013, Biosensors & bioelectronics.

[81]  Derek Abbott,et al.  Metamaterial-based microfluidic sensor for dielectric characterization , 2013 .

[82]  Raimond Grimberg,et al.  Enhancement of waveguide sensor for biological tissues dielectric properties investigation with metamaterials , 2012, 2012 35th International Conference on Telecommunications and Signal Processing (TSP).

[83]  Gang Wang,et al.  Resolution of Near-Field Microwave Target Detection and Imaging by Using Flat LHM Lens , 2007, IEEE Transactions on Antennas and Propagation.

[84]  Ekmel Ozbay,et al.  Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. , 2011, Optics letters.

[85]  S. Bhansali,et al.  Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. , 2015, Chemical reviews.

[86]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[87]  Tae Song Kim,et al.  Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. , 2004, Biosensors & bioelectronics.

[88]  Derek Abbott,et al.  Flexible terahertz metamaterials for dual-axis strain sensing. , 2013, Optics letters.

[89]  Yan Peng,et al.  Ultrathin dual-mode filtering characteristics of terahertz metamaterials with electrically unconnected and connected U-shaped resonators array , 2015 .

[90]  E. Ozbay,et al.  Ultrafast and sensitive bioassay using split ring resonator structures and microwave heating. , 2010, Applied physics letters.

[91]  Jong-Gwan Yook,et al.  DNA sensing using split-ring resonator alone at microwave regime , 2010 .

[92]  Chengkuo Lee,et al.  Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices , 2016 .

[93]  Wen-Jun Guan,et al.  Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. , 2005, Biosensors & bioelectronics.

[94]  L. Viveros,et al.  A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents , 2006 .

[95]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[96]  Jiangquan Zhang,et al.  Waveguide terahertz time-domain spectroscopy of nanometer water layers. , 2004, Optics letters.

[97]  Tatsuo Itoh,et al.  Metamaterial-Based Antennas , 2012, Proceedings of the IEEE.

[98]  Jong-Gwan Yook,et al.  Biosensing using split-ring resonators at microwave regime , 2008 .

[99]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[100]  J. Bonache,et al.  Babinet principle applied to the design of metasurfaces and metamaterials. , 2004, Physical review letters.

[101]  Jordi Bonache,et al.  Recent Advances in Metamaterial Transmission Lines Based on Split Rings , 2011, Proceedings of the IEEE.

[102]  Sangeeta Kale,et al.  Ultra-fast selective sensing of ethanol and petrol using microwave-range metamaterial complementary split-ring resonators , 2014 .

[103]  Flexible Terahertz Metamaterials On Polyimide Substrates , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[104]  Xunjun He,et al.  A Compact Thin-Film Sensor Based on Nested Split-Ring-Resonator (SRR) Metamaterials for Microwave Applications , 2011 .

[105]  Kodo Kawase,et al.  A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties , 2009 .

[106]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[108]  N. Evans,et al.  Fluorescence-based glucose sensors. , 2005, Biosensors & bioelectronics.

[109]  Thierry Wable,et al.  A displacement sensor. , 2005 .

[110]  High performance label-free biosensing by all dielectric metamaterial , 2014, 2014 International Conference on Optical MEMS and Nanophotonics.

[111]  Tao Chen,et al.  Metamaterials Application in Sensing , 2012, Sensors.

[112]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[113]  Derek Abbott,et al.  Rotation Sensor Based on Horn-Shaped Split Ring Resonator , 2013, IEEE Sensors Journal.

[114]  Jonathan M Cooper,et al.  Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. , 2009, Journal of the American Chemical Society.

[115]  Michael Nagel,et al.  Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization. , 2002, Applied optics.

[116]  O. Ramahi,et al.  Double Negative Metamaterials for Subsurface Detection , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.