Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

[1]  G. Garrity,et al.  Betaproteobacteria class. nov. , 2015 .

[2]  H. Koops,et al.  The Lithoautotrophic Ammonia‐Oxidizing Bacteria , 2015 .

[3]  George M. Garrity,et al.  Nitrosomonadales ord. nov , 2015 .

[4]  G. Garrity,et al.  Proteobacteria phyl. nov. , 2015 .

[5]  L. Stein Heterotrophic Nitrification and Nitrifier Denitrification , 2014 .

[6]  I-Min A. Chen,et al.  The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata , 2011, Nucleic Acids Res..

[7]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[8]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[9]  M. Klotz,et al.  Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. , 2011, FEMS microbiology letters.

[10]  Cliff Han,et al.  Genome Sequence of Nitrosomonas sp. Strain AL212, an Ammonia-Oxidizing Bacterium Sensitive to High Levels of Ammonia , 2011, Journal of bacteriology.

[11]  M. Klotz,et al.  Genomics of Ammonica-Oxidizing Bacteria and Insights into Their Evolution , 2011 .

[12]  A. Bollmann,et al.  Isolation, cultivation, and characterization of ammonia-oxidizing bacteria and archaea adapted to low ammonium concentrations. , 2011, Methods in enzymology.

[13]  Natalia N. Ivanova,et al.  GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes , 2010, Nature Methods.

[14]  I-Min A. Chen,et al.  The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata , 2007, Nucleic Acids Res..

[15]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[16]  Yiyong Zhou,et al.  Diversity and abundance of ammonia-oxidizing bacteria in eutrophic and oligotrophic basins of a shallow Chinese lake (Lake Donghu). , 2009, Research in microbiology.

[17]  Aaron Marc Saunders,et al.  Effect of Lake Trophic Status and Rooted Macrophytes on Community Composition and Abundance of Ammonia-Oxidizing Prokaryotes in Freshwater Sediments , 2009, Applied and Environmental Microbiology.

[18]  M. Klotz,et al.  Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath , 2008, The ISME Journal.

[19]  M. Badger,et al.  Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. , 2008, Journal of experimental botany.

[20]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[21]  Chris F. Taylor,et al.  The minimum information about a genome sequence (MIGS) specification , 2008, Nature Biotechnology.

[22]  P. Chain,et al.  Complete Genome Sequence of Nitrosospira multiformis, an Ammonia-Oxidizing Bacterium from the Soil Environment , 2008, Applied and Environmental Microbiology.

[23]  H. J. Laanbroek,et al.  Epiphyton as a Niche for Ammonia-Oxidizing Bacteria: Detailed Comparison with Benthic and Pelagic Compartments in Shallow Freshwater Lakes , 2008, Applied and Environmental Microbiology.

[24]  J. Euzéby List of new names and new combinations previously effectively, but not validly, published. , 2008, International journal of systematic and evolutionary microbiology.

[25]  P. Berube,et al.  Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. , 2007, Environmental microbiology.

[26]  M. Klotz,et al.  Characterization of Two New Genes, amoR and amoD, in the amo Operon of the Marine Ammonia Oxidizer Nitrosococcus oceani ATCC 19707 , 2007, Applied and Environmental Microbiology.

[27]  P. Chain,et al.  The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. , 2007, Annual review of microbiology.

[28]  J. Euzéby Validation List no. 117. List of new names and new combinations previously effectively, but not validly, published. , 2007, International journal of systematic and evolutionary microbiology.

[29]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[30]  M. Klotz,et al.  Cytochromes P460 and c′‐beta; A new family of high‐spin cytochromes c , 2007, FEBS letters.

[31]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[32]  G. Garrity,et al.  Class II. Betaproteobacteria class. nov. , 2005 .

[33]  T. Hansen Bergey's Manual of Systematic Bacteriology , 2005 .

[34]  H. Westerhoff,et al.  Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite‐sensitive transcription repressor , 2004, Molecular microbiology.

[35]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[36]  M. Klotz,et al.  Urease-Encoding Genes in Ammonia-Oxidizing Bacteria , 2004, Applied and Environmental Microbiology.

[37]  H. Harms,et al.  An ammonia-oxidizing bacterium, Nitrosovibrio tenuis nov. gen. nov. sp. , 1976, Archives of Microbiology.

[38]  S. Bennett Solexa Ltd. , 2004, Pharmacogenomics.

[39]  S. W. Watson Reisolation of Nitrosospira briensis S. Winogradsky and H. Winogradsky 1933 , 2004, Archiv für Mikrobiologie.

[40]  Stanley W. Watson,et al.  A lobular, ammonia-oxidizing bacterium, Nitrosolobus multiformis Nov. Gen. Nov. sp. , 2004, Archiv für Mikrobiologie.

[41]  J. Lamerdin,et al.  Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea , 2003, Journal of bacteriology.

[42]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[43]  A. Bollmann,et al.  Growth at Low Ammonium Concentrations and Starvation Response as Potential Factors Involved in Niche Differentiation among Ammonia-Oxidizing Bacteria , 2002, Applied and Environmental Microbiology.

[44]  L. Sayavedra-Soto,et al.  Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea , 2002, Archives of Microbiology.

[45]  A. Hooper,et al.  Nitrosocyanin, a red cupredoxin-like protein from Nitrosomonas europaea. , 2002, Biochemistry.

[46]  A. Bollmann,et al.  Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations , 2001 .

[47]  I. Nes,et al.  Detailed phylogeny of ammonia-oxidizing bacteria determined by rDNA sequences and DNA homology values. , 2001, International journal of systematic and evolutionary microbiology.

[48]  A. Ballal,et al.  Regulation of Potassium-Dependent Kdp-ATPase Expression in the Nitrogen-Fixing Cyanobacterium Anabaena torulosa , 2001, Journal of bacteriology.

[49]  H. Koops,et al.  Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species , 2001 .

[50]  G. Kowalchuk,et al.  Shifts in the dominant populations of ammonia-oxidizing ß subclass Proteobacteria along the eutrophic Schelde estuary , 2001 .

[51]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[52]  G. Kowalchuk,et al.  Ammonia-oxidizing bacteria: a model for molecular microbial ecology. , 2001, Annual review of microbiology.

[53]  R. Hassett,et al.  The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. , 2000, The Biochemical journal.

[54]  G. Kowalchuk,et al.  Recovery of a Nitrosomonas-like 16S rDNA sequence group from freshwater habitats. , 1998, Systematic and applied microbiology.

[55]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[56]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[57]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[58]  K. Noto,et al.  Phylogenetic relationships of activated sludge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate. , 1997, The Journal of general and applied microbiology.

[59]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[60]  Y. Suwa,et al.  Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges , 1994 .

[61]  K. Altendorf,et al.  The KDP ATPase of Escherichia coli. , 1992, Annals of the New York Academy of Sciences.

[62]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Ronald D. Jones,et al.  A new marine ammonium-oxidizing bacterium, Nitrosomonas cryotolerans sp. nov. , 1988 .

[64]  P. Sneath,et al.  Approved lists of bacterial names. , 1980, The Medical journal of Australia.

[65]  A. Balows Bergey's Manual of Determinative Bacteriology. Eighth Edition , 1975 .