Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes.

Electron emission from single, supported Ag nanocubes excited with ultrafast laser pulses (λ = 800 nm) is studied via spatial and polarization correlated (i) dark field scattering microscopy (DFM), (ii) scanning photoionization microscopy (SPIM), and (iii) high-resolution transmission electron microscopy (HRTEM). Laser-induced electron emission is found to peak for laser polarization aligned with cube diagonals, suggesting the critical influence of plasmonic near-field enhancement of the incident electric field on the overall electron yield. For laser pulses with photon energy below the metal work function, coherent multiphoton photoelectron emission (MPPE) is identified as the most probable mechanism responsible for electron emission from Ag nanocubes and likely metal nanoparticles/surfaces in general.

[1]  Michel Bosman,et al.  Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.

[2]  G. Schatz,et al.  LSPR Imaging of Silver Triangular Nanoprisms: Correlating Scattering with Structure Using Electrodynamics for Plasmon Lifetime Analysis , 2012 .

[3]  R. Frontiera,et al.  SERS: Materials, applications, and the future , 2012 .

[4]  C. Ropers,et al.  Strong-field photoemission from surfaces: Theoretical approaches , 2011 .

[5]  E. K. Stone,et al.  THz generation from plasmonic nanoparticle arrays. , 2011, Nano letters.

[6]  D. Silverstein,et al.  Probing two-photon properties of molecules: large non-Condon effects dominate the resonance hyper-Raman scattering of rhodamine 6G. , 2011, Journal of the American Chemical Society.

[7]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[8]  Christine H. Moran,et al.  Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. , 2011, Angewandte Chemie.

[9]  George C. Schatz,et al.  Correlated Structure and Optical Property Studies of Plasmonic Nanoparticles , 2011 .

[10]  D. Nesbitt,et al.  Polarization-dependent scanning photoionization microscopy: ultrafast plasmon-mediated electron ejection dynamics in single Au nanorods. , 2011, ACS nano.

[11]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[12]  Fabrice Charra,et al.  Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars. , 2011, Nano letters.

[13]  L. Jensen,et al.  Probing one-photon inaccessible electronic states with high sensitivity: wavelength scanned surface enhanced hyper-Raman scattering. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  D. Nesbitt,et al.  Multiphoton Scanning Photoionization Imaging Microscopy for Single-Particle Studies of Plasmonic Metal Nanostructures , 2011 .

[15]  Marlan O Scully,et al.  Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. , 2010, Nano letters.

[16]  George C Schatz,et al.  Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[17]  Younan Xia,et al.  Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach , 2010 .

[18]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[19]  J. Aizpurua,et al.  Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. , 2010, Nano letters.

[20]  S. Link,et al.  Probing a century old prediction one plasmonic particle at a time. , 2010, Nano letters.

[21]  Paul Mulvaney,et al.  Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra , 2009 .

[22]  L. Lechuga,et al.  LSPR-based nanobiosensors , 2009 .

[23]  Claire M. Cobley,et al.  Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications , 2009 .

[24]  George C. Schatz,et al.  Correlating the Structure, Optical Spectra, and Electrodynamics of Single Silver Nanocubes , 2009 .

[25]  Younan Xia,et al.  Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles , 2008 .

[26]  Olaf Schubert,et al.  Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry. , 2008, Nano letters.

[27]  N. Shah,et al.  Surface-enhanced Raman spectroscopy. , 2008, Annual review of analytical chemistry.

[28]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[29]  Thomas W. Ebbesen,et al.  Surface-plasmon circuitry , 2008 .

[30]  E. Fort,et al.  Surface enhanced fluorescence , 2008 .

[31]  Keiko Munechika,et al.  Plasmon Line Widths of Single Silver Nanoprisms as a Function of Particle Size and Plasmon Peak Position , 2007 .

[32]  A. Gloskovskii,et al.  Coexisting electron emission mechanisms in small metal particles observed in fs-laser excited PEEM , 2007 .

[33]  Younan Xia,et al.  Facile synthesis of Ag nanocubes and Au nanocages , 2007, Nature Protocols.

[34]  Younan Xia,et al.  Correlated Rayleigh Scattering Spectroscopy and Scanning Electron Microscopy Studies of Au-Ag Bimetallic Nanoboxes and Nanocages. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[35]  F. J. García de Abajo,et al.  Environmental Optical Sensitivity of Gold Nanodecahedra , 2007 .

[36]  Atsushi Kubo,et al.  Femtosecond microscopy of localized and propagating surface plasmons in silver gratings , 2007 .

[37]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[38]  Younan Xia,et al.  The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. , 2007, Nano letters.

[39]  D. Nesbitt,et al.  Imaging nanostructures with scanning photoionization microscopy. , 2006, The Journal of chemical physics.

[40]  Richard P Van Duyne,et al.  Surface-enhanced hyper-Raman scattering (SEHRS) on Ag film over Nanosphere (FON) electrodes: surface symmetry of centrosymmetric adsorbates. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[41]  Joseph M. McLellan,et al.  Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes , 2006 .

[42]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[43]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[44]  Chad A Mirkin,et al.  The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange , 2006, Nature Protocols.

[45]  H. Freund,et al.  Two-photon photoemission from silver nanoparticles on thin alumina films: Role of plasmon excitation , 2005 .

[46]  Younan Xia,et al.  Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.

[47]  Zhijun Sun,et al.  Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. , 2005, Nano letters.

[48]  G. Schönhense,et al.  Multiphoton photoemission electron microscopy using femtosecond laser radiation , 2002 .

[49]  M. Raynaud,et al.  Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission. , 2001, Physical review letters.

[50]  G. Gerber,et al.  Photoemission from multiply excited surface plasmons in Ag nanoparticles , 2000 .

[51]  P. Bernath,et al.  Spectra of Atoms and Molecules , 1996 .

[52]  Georges At Theory of the multiphoton photoelectric effect: A stepwise excitation process. , 1995 .

[53]  Yaochun Shen,et al.  SURFACE-ENHANCED SECOND-HARMONIC GENERATION AND RAMAN SCATTERING , 1983 .

[54]  J. H. Bechtel,et al.  Two-photon photoemission from metals induced by picosecond laser pulses , 1977 .

[55]  C. Mee,et al.  Oxygen Adsorption on the (111) Face of Silver , 1973, May 16.

[56]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .