Defuzzification methods in intuitionistic fuzzy inference systems of Takagi-Sugeno type: The case of corporate bankruptcy prediction

Recently, an intuitionistic fuzzy inference system (IFIS) of Takagi-Sugeno type has been proposed. Previous results have shown that by adding non-membership functions, the average errors may be significantly decreased compared with FISs. In this paper, we design defuzzification methods for this class of systems. The methods are based on weighted average and weighted sum of the consequents of rules in IFIS. The empirical comparison of the methods is carried out on a dataset for corporate bankruptcy prediction.

[1]  J. Goguen L-fuzzy sets , 1967 .

[2]  N. N. Karnik,et al.  Introduction to type-2 fuzzy logic systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[3]  Petr Hájek,et al.  Credit rating analysis using adaptive fuzzy rule-based systems: an industry-specific approach , 2012, Central Eur. J. Oper. Res..

[4]  Sung-Kwun Oh,et al.  A comparative experimental study of type-1/type-2 fuzzy cascade controller based on genetic algorithms and particle swarm optimization , 2011, Expert Syst. Appl..

[5]  Radko Mesiar,et al.  Triangular norms. Position paper I: basic analytical and algebraic properties , 2004, Fuzzy Sets Syst..

[6]  Plamen Angelov,et al.  Crispification : defuzzification over intuitionistic fuzzy sets. , 1995 .

[7]  Janusz T. Starczewski,et al.  Connectionist Structures of Type 2 Fuzzy Inference Systems , 2001, PPAM.

[8]  Petr Hájek,et al.  Adaptive Intuitionistic Fuzzy Inference Systems of Takagi-Sugeno Type for Regression Problems , 2012, AIAI.

[9]  Humberto Bustince,et al.  Generalized Atanassov's Intuitionistic Fuzzy Index. Construction Method , 2009, IFSA/EUSFLAT Conf..

[10]  Ricardo Martínez-Soto,et al.  Optimization of Interval Type-2 Fuzzy Logic Controllers for a Perturbed Autonomous Wheeled Mobile Robot Using Genetic Algorithms , 2009, Soft Computing for Hybrid Intelligent Systems.

[11]  Hani Hagras,et al.  A genetic type-2 fuzzy logic based system for the generation of summarised linguistic predictive models for financial applications , 2013, Soft Comput..

[12]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[13]  Chris Cornelis,et al.  On the representation of intuitionistic fuzzy t-norms and t-conorms , 2004, IEEE Transactions on Fuzzy Systems.

[14]  Mohammad Hossein Fazel Zarandi,et al.  A type-2 fuzzy rule-based expert system model for stock price analysis , 2009, Expert Syst. Appl..

[15]  Francisco Javier de Cos Juez,et al.  Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS) , 2011, Expert Syst. Appl..

[16]  I. Turksen Interval valued fuzzy sets based on normal forms , 1986 .

[17]  Hisao Ishibuchi,et al.  Efficient fuzzy partition of pattern space for classification problems , 1993 .

[18]  Petr Hájek,et al.  IF-Inference Systems Design for Prediction of Ozone Time Series: The Case of Pardubice Micro-region , 2010, ICANN.

[19]  Etienne E. Kerre,et al.  On the relationship between some extensions of fuzzy set theory , 2003, Fuzzy Sets Syst..

[20]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[21]  Petr Hájek,et al.  Air Quality Modeling by Fuzzy Sets and IF-Sets , 2011 .

[22]  Witold Pedrycz,et al.  Fuzzy control and fuzzy systems , 1989 .

[23]  Gang Wang,et al.  A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method , 2011, Knowl. Based Syst..

[24]  Oscar Castillo,et al.  Mediative fuzzy logic: a new approach for contradictory knowledge management , 2007, Soft Comput..

[25]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[26]  K. Huarng,et al.  A Type 2 fuzzy time series model for stock index forecasting , 2005 .

[27]  Oscar Castillo,et al.  An optimization method for designing type-2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms , 2012, Expert Syst. Appl..

[28]  Ludmila I. Kuncheva,et al.  Fuzzy Classifier Design , 2000, Studies in Fuzziness and Soft Computing.

[29]  M. Gorzałczany A method for inference in approximate reasoning based on interval-valued fuzzy sets , 1987 .

[30]  Petr Hájek,et al.  Comparison of Fuzzy Operators for IF-Inference Systems of Takagi-Sugeno Type in Ozone Prediction , 2011, EANN/AIAI.