An Element-Based Spectrally Optimized Approximate Inverse Preconditioner for the Euler Equations

We introduce a method for constructing an element-by-element sparse approximate inverse (SAI) preconditioner designed to be effective in a massively parallel spectral element modeling environment involving nonsymmetric systems. This new preconditioning approach is based on a spectral optimization of a low-resolution preconditioned system matrix. We show that the local preconditioning matrices obtained via this element-based spectrum-optimized (EBSO) approach may be applied to arbitrarily high-resolution versions of the same system matrix without appreciable loss of preconditioner performance. We demonstrate the performance of the EBSO preconditioning approach using two-dimensional spectral element method formulations for a simple linear conservation law and for the fully compressible two-dimensional Euler equations with various boundary conditions. For the latter model running at sufficiently large Courant number, the EBSO preconditioner significantly reduces both iteration count and wall-clock time regar...

[1]  P. Strevens Iii , 1985 .

[2]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[3]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[4]  Marek Szularz,et al.  Generalized least-squares polynomial preconditioners for symmetric indefinite linear equations , 2002, Parallel Comput..

[5]  Francis X. Giraldo,et al.  Continuous and Discontinuous Galerkin Methods for a Scalable 3D Nonhydrostatic Atmospheric Model: limited-area mode , 2012 .

[6]  M. Benzi,et al.  A comparative study of sparse approximate inverse preconditioners , 1999 .

[7]  Michele Benzi,et al.  Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[10]  Francis X. Giraldo,et al.  Semi-Implicit Formulations of the Navier--Stokes Equations: Application to Nonhydrostatic Atmospheric Modeling , 2010, SIAM J. Sci. Comput..

[11]  Charles E. Augarde,et al.  An element-based displacement preconditioner for linear elasticity problems , 2006 .

[12]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[13]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[14]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..