Varieties of lattice ordered groups that contain no non-abelian o-groups are solvable
暂无分享,去创建一个
[1] C. Holland,et al. The lattice-ordered groups of automorphisms of an ordered set. , 1963 .
[2] P. Conrad. Free lattice-ordered groups , 1970 .
[3] Paul F. Conrad,et al. Lattice ordered groups , 1970 .
[4] Jorge Martínez. Varieties of lattice-ordered groups , 1974 .
[5] E. Scrimger. A large class of small varieties of lattice-ordered groups , 1975 .
[6] Klaus Keimel,et al. Groupes et anneaux réticulés , 1977 .
[7] W. Holland. Varieties of $l$-groups are torsion classes , 1979 .
[8] A. Glass,et al. The structure of ℓ-group varieties , 1980 .
[9] N. Reilly,et al. Suprema of classes of generalized scrimger varieties of lattice ordered groups , 1981 .
[10] A. M. W. Glass,et al. Ordered Permutation Groups , 1982 .
[11] T. Feil. An uncountable tower ofl-group varieties , 1982 .
[12] S. A. Gurchenkov. Minimal varieties of ℓ -groups , 1982 .
[13] S. A. Gurchenkov. Varieties of ℓ-groups with the identity 20-120-120-1have finite bases , 1984 .
[14] Alan H. Mekler,et al. Varieties of lattice-ordered groups in which prime powers commute , 1986 .
[15] M. Darnel. Special-valued l-groups and Abelian covers , 1987 .
[16] Norman R. Reilly,et al. Metabelian varieties ofl-groups which contain no non-abeliano-groups , 1987 .
[17] V. Kopytov,et al. Description of covers of the variety of Abelian lattice-ordered groups , 1987 .