See-coast: polarimetric and spectral characterization of exoplanets with a small space telescope

To characterize orbits and atmospheres of exoplanets with large orbits (≥ a few AU), direct imaging is nowadays the sole way. From space, this involves high contrast imaging techniques as coronagraphy, differential imaging or wavefront control. Several methods exist or are under development and several small (~1.5m) space telescope missions are proposed. One of them is See-coast (super-Earth explorer coronagraphic off-axis space telescope) which will be proposed to the next ESA Cosmic Vision call. It will provide polarimetric and spectral characterization of giant gazeous planets and possibly Super-Earths in visible light. In this paper, we first detail science cases of this mission. We then describe the foreseen telescope design and its instrumentation. We finally derive performance for a particular instrumental configuration from numerical simulation and we show how See-coast can retrieve planet spectra.

[1]  R. Galicher,et al.  Wavefront error correction and Earth-like planet detection by a self-coherent camera in space , 2008, 0807.2467.

[2]  Kjetil Dohlen,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[3]  J. P. Laboratory,et al.  High-Contrast Imaging from Space: Speckle Nulling in a Low-Aberration Regime , 2005, astro-ph/0510597.

[4]  D. Mawet,et al.  Super earth explorer: a coronagraphic off-axis space telescope , 2009 .

[5]  D. M. Stam,et al.  Spectropolarimetric signatures of Earth-like extrasolar planets , 2007, 0707.3905.

[6]  Drake Deming,et al.  STUDYING THE ATMOSPHERE OF THE EXOPLANET HAT-P-7b VIA SECONDARY ECLIPSE MEASUREMENTS WITH EPOXI, SPITZER, AND KEPLER , 2009, 0912.2132.

[7]  C. Marois,et al.  TRIDENT: an Infrared Differential Imaging Camera Optimized for the Detection of Methanated Substellar Companions , 2005 .

[8]  Nuno C. Santos,et al.  Extra-solar planets: Detection methods and results , 2008 .

[9]  P. McCullough,et al.  PROBING THE TERMINATOR REGION ATMOSPHERE OF THE HOT-JUPITER XO-1b WITH TRANSMISSION SPECTROSCOPY , 2010, 1002.2434.

[10]  N. Thatte,et al.  Very high contrast integral field spectroscopy of AB Doradus C: 9-mag contrast at 0.2 arcsec without a coronagraph using spectral deconvolution , 2007, astro-ph/0703565.

[11]  J. Baudrand,et al.  Theory and laboratory tests of the multi-stage phase mask coronagraph , 2008, Astronomical Telescopes + Instrumentation.

[12]  A. Boccaletti,et al.  Imaging exoplanets with the coronagraph of JWST/MIRI , 2005 .

[13]  Debra A. Fischer,et al.  Exoplanet properties from Lick, Keck and AAT , 2008 .

[14]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[15]  Pierre Baudoz,et al.  The Self-Coherent Camera: a new tool for planet detection , 2005, Proceedings of the International Astronomical Union.

[16]  R. Galicher,et al.  Expected performance of a self-coherent camera , 2007 .

[17]  C. Rao,et al.  Modified Gaussian influence function of deformable mirror actuators. , 2008, Optics express.

[18]  D. Mawet,et al.  Annular Groove Phase Mask Coronagraph , 2005 .

[19]  A. Burrows A theoretical look at the direct detection of giant planets outside the Solar System , 2005, Nature.

[20]  Pierre Baudoz,et al.  Self-coherent camera as a focal plane wavefront sensor: simulations , 2009, 0911.2465.

[21]  A. Labeyrie,et al.  The Four-Quadrant Phase-Mask Coronagraph. I. Principle , 2000 .

[22]  Bruce A. Macintosh,et al.  The Gemini Planet Imager: from science to design to construction , 2008, Astronomical Telescopes + Instrumentation.

[23]  Pierre Baudoz,et al.  EPICS, the exoplanet imager for the E-ELT , 2010 .

[24]  Shane Jacobson,et al.  Concept and science of HiCIAO: high contrast instrument for the Subaru next generation adaptive optics , 2006, SPIE Astronomical Telescopes + Instrumentation.

[25]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.