Burrows–Wheeler compression with variable length integer codes

The final coder in Burrows–Wheeler compression is usually either an adaptive Huffman coder (for speed) or a complex of arithmetic coders for better compression. This article describes the use of conventional pre‐defined variable length codes or universal codes and shows that they too can give excellent compression. The paper also describes a ‘sticky Move‐to‐Front’ modification which gives a useful improvement in compression for most files. Copyright © 2002 John Wiley & Sons, Ltd.

[1]  Bernhard Balkenhol,et al.  One attempt of a compression algorithm using the BWT , 1999 .

[2]  P. Fenwick,et al.  Block Sorting Text Compression -- Final Report , 1996 .

[3]  Ziya Arnavut Generalization of the BWT transformation and inversion ranks , 2002, Proceedings DCC 2002. Data Compression Conference.

[4]  Bernhard Balkenhol,et al.  Modifications of the Burrows and Wheeler data compression algorithm , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[5]  Sebastian Deorowicz,et al.  Second step algorithms in the Burrows–Wheeler compression algorithm , 2002, Softw. Pract. Exp..

[6]  D. J. Wheeler,et al.  A Block-sorting Lossless Data Compression Algorithm , 1994 .

[7]  P. Fenwick Improvements to the Block Sorting Text Compression Algorithm , 1995 .

[8]  Alistair Moffat,et al.  Can we do without ranks in Burrows Wheeler transform compression? , 2001, Proceedings DCC 2001. Data Compression Conference.

[9]  Peter M. Fenwick Experiments with a Block Sorting Text Compression Algorithm , 1995 .

[10]  Peter M. Fenwick The Burrows-Wheeler Transform for Block Sorting Text Compression: Principles and Improvements , 1996, Comput. J..

[11]  Sebastian Deorowicz,et al.  Improvements to Burrows-Wheeler compression algorithm , 2000, Softw. Pract. Exp..

[12]  Shmuel Tomi Klein,et al.  Robust Universal Complete Codes for Transmission and Compression , 1996, Discret. Appl. Math..

[13]  Peter Elias,et al.  Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.