Construction of a Vertebrate Embryo from Two Opposing Morphogen Gradients

Designer Embryo Numerous signaling pathways have been implicated in controlling early vertebrate embryogenesis. P.-F. Xu et al. (p. 87) identify the minimal set of factors necessary to get uncommitted cells to organize a complete embryo. Two opposing gradients of the growth factors Nodal and Bone Morphogenetic Protein were sufficient to instruct zebrafish embryonic pluripotent cells to organize a complete embryo, not only in vivo but also in vitro. These findings may provide guidance for regenerative medicine studies aimed at constructing tissues and organs in vitro from cultured pluripotent cells. Opposing gradients of bone morphogenetic protein and Nodal can induce the formation of a zebrafish embryo. Development of vertebrate embryos involves tightly regulated molecular and cellular processes that progressively instruct proliferating embryonic cells about their identity and behavior. Whereas numerous gene activities have been found to be essential during early embryogenesis, little is known about the minimal conditions and factors that would be sufficient to instruct pluripotent cells to organize the embryo. Here, we show that opposing gradients of bone morphogenetic protein (BMP) and Nodal, two transforming growth factor family members that act as morphogens, are sufficient to induce molecular and cellular mechanisms required to organize, in vivo or in vitro, uncommitted cells of the zebrafish blastula animal pole into a well-developed embryo.

[1]  Jessica E. Tierney,et al.  A Bayesian, spatially-varying calibration model for the TEX86 proxy , 2014 .

[2]  J. Hertzberg,et al.  Refining Globigerinoides ruber Mg/Ca paleothermometry in the Atlantic Ocean , 2013 .

[3]  K. Lawrence,et al.  Patterns and mechanisms of early Pliocene warmth , 2013, Nature.

[4]  A. Eisenhauer,et al.  Calcium carbonate veins in ocean crust record a threefold increase of seawater Mg/Ca in the past 30 million years , 2013 .

[5]  Stefan Schouten,et al.  The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review , 2013 .

[6]  P. Peng,et al.  Archaeal tetraether lipids record subsurface water temperature in the South China Sea , 2012 .

[7]  A. Crimmins,et al.  Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing , 2012, Nature.

[8]  T. Herbert,et al.  Alkenone unsaturation in surface sediments from the eastern equatorial Pacific: Implications for SST reconstructions , 2012 .

[9]  A. Ravelo,et al.  Late Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing , 2011 .

[10]  B. Thisse,et al.  Identification and mechanism of regulation of the zebrafish dorsal determinant , 2011, Proceedings of the National Academy of Sciences.

[11]  Hui Wang,et al.  A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change , 2011 .

[12]  E. Schefuß,et al.  Miocene to Pliocene development of surface and subsurface temperatures in the Benguela Current system , 2011 .

[13]  G. Mollenhauer,et al.  Core top TEX86 values in the south and equatorial Pacific , 2011 .

[14]  Stefan Schouten,et al.  New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions , 2010 .

[15]  R. Coggon,et al.  Reconstructing Past Seawater Mg/Ca and Sr/Ca from Mid-Ocean Ridge Flank Calcium Carbonate Veins , 2010, Science.

[16]  Zhonghui Liu,et al.  High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations , 2010 .

[17]  Stefan Schouten,et al.  Effects of long term oxic degradation on the U37K′, TEX86 and BIT organic proxies , 2009 .

[18]  B. Thisse,et al.  The entire zebrafish blastula-gastrula margin acts as an organizer dependent on the ratio of Nodal to BMP activity , 2009, Development.

[19]  Shawn C. Little,et al.  BMP heterodimers assemble hetero-type I receptor complexes that pattern the DV axis , 2009, Nature Cell Biology.

[20]  R. Leckie,et al.  Early history of the Western Pacific Warm Pool during the middle to late Miocene (~ 13.2–5.8 Ma): Role of sea-level change and implications for equatorial circulation , 2009 .

[21]  Henk Brinkhuis,et al.  Climate Transition Global Cooling During the Eocene-Oligocene , 2009 .

[22]  M. Huber,et al.  Tropical sea temperatures in the high-latitude South Pacific during the Eocene , 2009 .

[23]  M. Medina‐Elizalde,et al.  Implications of seawater Mg/Ca variability for Plio-Pleistocene tropical climate reconstruction , 2008 .

[24]  M. Könneke,et al.  Intact Membrane Lipids of “Candidatus Nitrosopumilus maritimus,” a Cultivated Representative of the Cosmopolitan Mesophilic Group I Crenarchaeota , 2008, Applied and Environmental Microbiology.

[25]  Stefan Schouten,et al.  Global sediment core-top calibration of the TEX86 paleothermometer in the ocean , 2008 .

[26]  M. Mullins,et al.  The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. , 2008, Developmental cell.

[27]  A. Ravelo,et al.  Warm upwelling regions in the Pliocene warm period , 2007 .

[28]  Sophia von der Hardt,et al.  The Bmp Gradient of the Zebrafish Gastrula Guides Migrating Lateral Cells by Regulating Cell-Cell Adhesion , 2007, Current Biology.

[29]  P. Pearson,et al.  Stable warm tropical climate through the Eocene Epoch , 2007 .

[30]  B. Thisse,et al.  High-resolution in situ hybridization to whole-mount zebrafish embryos , 2007, Nature Protocols.

[31]  Stefan Schouten,et al.  Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea: Implications for TEX86 paleothermometry , 2006 .

[32]  P. Pearson,et al.  Microstructural and geochemical perspectives on planktic foraminiferal preservation: “Glassy” versus “Frosty” , 2006 .

[33]  Shawn C. Little,et al.  Extracellular modulation of BMP activity in patterning the dorsoventral axis. , 2006, Birth defects research. Part C, Embryo today : reviews.

[34]  D. DePaolo,et al.  Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: Calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years , 2006 .

[35]  K. Hatta,et al.  Cell tracking using a photoconvertible fluorescent protein , 2006, Nature Protocols.

[36]  Gavin A. Schmidt,et al.  Global gridded data set of the oxygen isotopic composition in seawater , 2006 .

[37]  Timothy D. Herbert,et al.  Evolution of the Eastern Tropical Pacific Through Plio-Pleistocene Glaciation , 2006, Science.

[38]  E. D. Robertis,et al.  Spemann's organizer and self-regulation in amphibian embryos , 2006, Nature Reviews Molecular Cell Biology.

[39]  S. Doney,et al.  The dangers of ocean acidification. , 2006, Scientific American.

[40]  M. Conte,et al.  Global temperature calibration of the alkenone unsaturation index (UK′37) in surface waters and comparison with surface sediments , 2006 .

[41]  E. D. De Robertis Spemann's organizer and self-regulation in amphibian embryos , 2006, Nature reviews. Molecular cell biology.

[42]  Stefan Schouten,et al.  Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: Implications for TEX86 paleothermometry , 2005 .

[43]  M. Wara,et al.  Permanent El Niño-Like Conditions During the Pliocene Warm Period , 2005, Science.

[44]  Stefan Schouten,et al.  Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry , 2004 .

[45]  B. Hönisch,et al.  Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera , 2004 .

[46]  Michael Brand,et al.  Endocytosis Controls Spreading and Effective Signaling Range of Fgf8 Protein , 2004, Current Biology.

[47]  T. Hirano,et al.  STAT3 noncell-autonomously controls planar cell polarity during zebrafish convergence and extension , 2004, The Journal of cell biology.

[48]  T. Hirano,et al.  Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer , 2004, Nature.

[49]  B. Thisse,et al.  The molecular nature of the zebrafish tail organizer , 2003, Nature.

[50]  G. Wolfe,et al.  Physiological impacts on alkenone paleothermometry , 2003 .

[51]  W. Talbot,et al.  The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm , 2003, Development.

[52]  Stefan Schouten,et al.  Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? , 2002 .

[53]  A. Schier,et al.  Stat3 Controls Cell Movements during Zebrafish Gastrulation. , 2002, Developmental cell.

[54]  R. V. Demicco,et al.  Oscillations in Phanerozoic Seawater Chemistry: Evidence from Fluid Inclusions , 2001, Science.

[55]  Christopher J. Nicholas,et al.  Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs , 2001, Nature.

[56]  Alexander F. Schier,et al.  The zebrafish Nodal signal Squint functions as a morphogen , 2001, Nature.

[57]  W. Talbot,et al.  Nodal signaling and the zebrafish organizer. , 2001, The International journal of developmental biology.

[58]  H. Spemann,et al.  Induction of Embryonic Primordia by Implantation of Organizers from a Different Species. , 2024, Cells & development.

[59]  Stefan Schouten,et al.  Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Stefan Schouten,et al.  Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. , 2000, Rapid communications in mass spectrometry : RCM.

[61]  M. Fürthauer,et al.  Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. , 2000, Development.

[62]  G. P. Lohmann,et al.  Incorporation and preservation of Mg in Globigerinoides sacculifer: implications for reconstructing the temperature and 18O/16O of seawater , 2000 .

[63]  C. Wright,et al.  Activin- and Nodal-related factors control antero–posterior patterning of the zebrafish embryo , 2000, Nature.

[64]  M. Gates,et al.  Zebrafish organizer development and germ-layer formation require nodal-related signals , 1998, Nature.

[65]  A. Rosell‐Melé,et al.  Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S) , 1998 .

[66]  《中华放射肿瘤学杂志》编辑部 Medline , 2001, Current Biology.

[67]  R. Moon,et al.  Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus , 1997, Mechanisms of Development.

[68]  L. Zon,et al.  The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. , 1997, Development.

[69]  C. Pelejero,et al.  The correlation between the 37k index and sea surface temperatures in the warm boundary: The South China Sea , 1997 .

[70]  M. Fürthauer,et al.  A role for FGF-8 in the dorsoventral patterning of the zebrafish gastrula. , 1997, Development.

[71]  G. Struhl,et al.  Direct and Long-Range Action of a Wingless Morphogen Gradient , 1996, Cell.

[72]  H. Elderfield,et al.  Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg‐dependent dissolution , 1996 .

[73]  H. Steinbeisser,et al.  β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos , 1996, Mechanisms of Development.

[74]  D. Schrag,et al.  Pore Fluid Constraints on the Temperature and Oxygen Isotopic Composition of the Glacial Ocean , 1996, Science.

[75]  S. D’Hondt,et al.  Late Cretaceous Oceans and the Cool Tropic Paradox , 1996, Science.

[76]  A. Hemmati-Brivanlou,et al.  Caudalization of neural fate by tissue recombination and bFGF. , 1995, Development.

[77]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[78]  Donald J. DePaolo,et al.  Reconstructing past sea surface temperatures: Correcting for diagenesis of bulk marine carbonate , 1995 .

[79]  S. Blackburn,et al.  Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate , 1995 .

[80]  I B Dawid,et al.  Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish. , 1995, Development.

[81]  W. Berggren,et al.  GEOCHRONOLOGY, TIME SCALES AND GLOBAL STRATIGRAPHIC CORRELATION , 1995 .

[82]  R. Ho,et al.  Commitment of cell fate in the early zebrafish embryo. , 1993, Science.

[83]  V. Klemas,et al.  Temperature and Size Variabilities of the Western Pacific Warm Pool , 1992, Science.

[84]  J. Smith,et al.  Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. , 1992, Development.

[85]  D. Melton,et al.  Pre-existent pattern in Xenopus animal pole cells revealed by induction with activin , 1991, Nature.

[86]  J. Morse,et al.  The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition , 1983 .

[87]  J. Erez,et al.  Temperature control of oxygen-isotope fractionation of cultured planktonic foraminifera , 1982, Nature.

[88]  H. Okada,et al.  The distribution of oceanic coccolithophorids in the Pacific , 1973 .