Cooperative co-evolutionary algorithms for large-scale optimization

The aim of this research is to investigate the use of a divide-and-conquer approach for solving continuous large-scale global optimization problems using evolutionary methods. The curse of dimensionality is a major hindrance to the efficient optimization

[1]  David E. Goldberg,et al.  Dependency Structure Matrix, Genetic Algorithms, and Effective Recombination , 2009, Evolutionary Computation.

[2]  Yaochu Jin,et al.  Adaptive encoding for aerodynamic shape optimization using evolution strategies , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[3]  Antonio LaTorre,et al.  Large scale global optimization: Experimental results with MOS-based hybrid algorithms , 2013, 2013 IEEE Congress on Evolutionary Computation.

[4]  David E. Goldberg,et al.  Linkage Identification by Non-monotonicity Detection for Overlapping Functions , 1999, Evolutionary Computation.

[5]  Shahryar Rahnamayan,et al.  Opposition-Based Differential Evolution Algorithms , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[6]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[7]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[8]  Xiaodong Li,et al.  Cooperative Co-evolution with delta grouping for large scale non-separable function optimization , 2010, IEEE Congress on Evolutionary Computation.

[9]  Xin Yao,et al.  Differential evolution for high-dimensional function optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[10]  Xin Yao,et al.  Making a Difference to Differential Evolution , 2008, Advances in Metaheuristics for Hard Optimization.

[11]  Yaochu Jin,et al.  A Competitive Swarm Optimizer for Large Scale Optimization , 2015, IEEE Transactions on Cybernetics.

[12]  Konstantinos E. Parsopoulos,et al.  Cooperative micro-differential evolution for high-dimensional problems , 2009, GECCO.

[13]  Kenneth A. De Jong,et al.  Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods on the Choice of the Offspring Population Size in Evolutionary Algorithms on the Choice of the Offspring Population Size in Evolutionary Algorithms , 2004 .

[14]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[15]  Jonathan Rigelsford,et al.  Concurrent Engineering Fundamentals Volumes 1 & 2 , 1999 .

[16]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[17]  Yan Wu,et al.  An efficient algorithm for high-dimensional function optimization , 2013, Soft Comput..

[18]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  David B. Fogel,et al.  The Advantages of Evolutionary Computation , 1997, BCEC.

[21]  Masaharu Munetomo,et al.  Linkage Identification by Nonlinearity Check for Real-Coded Genetic Algorithms , 2004, GECCO.

[22]  Tapabrata Ray,et al.  Divide and Conquer in Coevolution: A Difficult Balancing Act , 2010 .

[23]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[24]  Yi Mei,et al.  Variable Neighborhood Decomposition for Large Scale Capacitated Arc Routing Problem , 2014 .

[25]  Xiaodong Li,et al.  A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box Optimization , 2016, ACM Trans. Math. Softw..

[26]  M Ptashne,et al.  How gene activators work. , 1989, Scientific American.

[27]  Yiqiao Cai,et al.  Enhancing the search ability of differential evolution through competent leader , 2014, Int. J. High Perform. Syst. Archit..

[28]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[29]  Clifford Hildreth,et al.  A quadratic programming procedure , 1957 .

[30]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[31]  Shuhei Kimura,et al.  Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm , 2005, Bioinform..

[32]  Xiaodong Li,et al.  Why Advanced Population Initialization Techniques Perform Poorly in High Dimension? , 2014, SEAL.

[33]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[34]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[35]  Xin Yao,et al.  Multilevel cooperative coevolution for large scale optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[36]  Aritra Chowdhury,et al.  Large Scale Optimization Based on Co-ordinated Bacterial Dynamics and Opposite Numbers , 2012, SEMCCO.

[37]  Ali Yassine,et al.  Complex Concurrent Engineering and the Design Structure Matrix Method , 2003, Concurr. Eng. Res. Appl..

[38]  Yuping Wang,et al.  An orthogonal genetic algorithm with quantization for global numerical optimization , 2001, IEEE Trans. Evol. Comput..

[39]  Thomas Stützle,et al.  An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re)design of optimization algorithms , 2011, Soft Comput..

[40]  Antonio LaTorre de la Fuente,et al.  A framework for hybrid dynamic evolutionary algorithms : multiple offspring sampling (MOS) , 2009 .

[41]  Luís N. Vicente,et al.  Using Sampling and Simplex Derivatives in Pattern Search Methods , 2007, SIAM J. Optim..

[42]  Shang-Jeng Tsai,et al.  Solving large scale global optimization using improved Particle Swarm Optimizer , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[43]  G. Cohen Auxiliary problem principle and decomposition of optimization problems , 1980 .

[44]  Ata Kabán,et al.  Two approaches of using heavy tails in high dimensional EDA , 2014, 2014 IEEE International Conference on Data Mining Workshop.

[45]  Julio R. Banga,et al.  A cooperative strategy for parameter estimation in large scale systems biology models , 2012, BMC Systems Biology.

[46]  Karsten Weicker,et al.  On the improvement of coevolutionary optimizers by learning variable interdependencies , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[47]  G. G. Wang,et al.  Metamodeling for High Dimensional Simulation-Based Design Problems , 2010 .

[48]  Shahryar Rahnamayan,et al.  Cooperative Co-evolution with a new decomposition method for large-scale optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[49]  P. Toint,et al.  Partitioned variable metric updates for large structured optimization problems , 1982 .

[50]  Zhenyu Yang,et al.  Large-Scale Global Optimization Using Cooperative Coevolution with Variable Interaction Learning , 2010, PPSN.

[51]  Xiaodong Li,et al.  Cooperative Coevolution With Route Distance Grouping for Large-Scale Capacitated Arc Routing Problems , 2014, IEEE Transactions on Evolutionary Computation.

[52]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[53]  Xiaodong Li,et al.  Cooperative Co-evolution for large scale optimization through more frequent random grouping , 2010, IEEE Congress on Evolutionary Computation.

[54]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[55]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[56]  J. Warga Minimizing Certain Convex Functions , 1963 .

[57]  Carlos García-Martínez,et al.  Memetic Algorithms for Continuous Optimisation Based on Local Search Chains , 2010, Evolutionary Computation.

[58]  Shahryar Rahnamayan,et al.  Quasi-oppositional Differential Evolution , 2007, 2007 IEEE Congress on Evolutionary Computation.

[59]  Qingfu Zhang,et al.  On the limits of effectiveness in estimation of distribution algorithms , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[60]  D.E. Goldberg,et al.  A genetic algorithm using linkage identification by nonlinearity check , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[61]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[62]  Yun Shang,et al.  A Note on the Extended Rosenbrock Function , 2006 .

[63]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[64]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[65]  Xiaodong Li,et al.  Effective decomposition of large-scale separable continuous functions for cooperative co-evolutionary algorithms , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[66]  D. Goldberg,et al.  A Survey of Linkage Learning Techniques in Genetic and Evolutionary Algorithms , 2007 .

[67]  Raymond Chiong,et al.  Evolutionary Optimization: Pitfalls and Booby Traps , 2012, Journal of Computer Science and Technology.

[68]  C. B. Lucasius,et al.  Genetic algorithms for large-scale optimization in chemometrics: An application , 1991 .

[69]  G. Gary Wang,et al.  Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions , 2010 .

[70]  Tyson R. Browning,et al.  Applying the design structure matrix to system decomposition and integration problems: a review and new directions , 2001, IEEE Trans. Engineering Management.

[71]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[72]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[73]  Wei Zeng,et al.  A Dual-System Variable-Grain Cooperative Coevolutionary Algorithm: Satellite-Module Layout Design , 2010, IEEE Transactions on Evolutionary Computation.

[74]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[75]  Qiang Huang,et al.  Community Detection Using Cooperative Co-evolutionary Differential Evolution , 2012, PPSN.

[76]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[77]  Marie Schmidt,et al.  Nonparametrics Statistical Methods Based On Ranks , 2016 .

[78]  Francisco J. Rodríguez,et al.  Role differentiation and malleable mating for differential evolution: an analysis on large-scale optimisation , 2011, Soft Comput..

[79]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[80]  Xiaodong Li,et al.  Effects of population initialization on differential evolution for large scale optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[81]  Antonio LaTorre,et al.  Multiple Offspring Sampling in Large Scale Global Optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[82]  Chao Wang,et al.  A differential evolution algorithm with cooperative coevolutionary selection operation for high-dimensional optimization , 2014, Optim. Lett..

[83]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[84]  J. Hopcroft,et al.  Efficient algorithms for graph manipulation , 1971 .

[85]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[86]  David E. Goldberg,et al.  Combining The Strengths Of Bayesian Optimization Algorithm And Adaptive Evolution Strategies , 2002, GECCO.

[87]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer with local search for Large Scale Global Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[88]  Xiaodong Li,et al.  Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle swarms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[89]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[90]  John E. Dennis,et al.  Problem Formulation for Multidisciplinary Optimization , 1994, SIAM J. Optim..

[91]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[92]  Bin Li,et al.  A Self-adaptive Mixed Distribution Based Uni-variate Estimation of Distribution Algorithm for Large Scale Global Optimization , 2009, Nature-Inspired Algorithms for Optimisation.

[93]  Shahryar Rahnamayan,et al.  Center-based sampling for population-based algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[94]  A. Griewank Generalized descent for global optimization , 1981 .

[95]  Arnold Neumaier,et al.  Global Optimization by Multilevel Coordinate Search , 1999, J. Glob. Optim..

[96]  Ke Tang,et al.  Scaling Up Covariance Matrix Adaptation Evolution Strategy Using Cooperative Coevolution , 2013, IDEAL.

[97]  Xiaodong Li,et al.  Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[98]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[99]  Enrique Alba,et al.  Restart particle swarm optimization with velocity modulation: a scalability test , 2011, Soft Comput..

[100]  Ata Kabán,et al.  When is 'nearest neighbour' meaningful: A converse theorem and implications , 2009, J. Complex..

[101]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[102]  Xin Yao,et al.  Meta-Heuristic Algorithms in Car Engine Design: A Literature Survey , 2015, IEEE Transactions on Evolutionary Computation.

[103]  G. Harik Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms , 1997 .

[104]  Katya Scheinberg,et al.  Recent progress in unconstrained nonlinear optimization without derivatives , 1997, Math. Program..

[105]  Xiaodong Li,et al.  Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms , 2011, GECCO '11.

[106]  Ville Tirronen,et al.  Shuffle or update parallel differential evolution for large-scale optimization , 2011, Soft Comput..

[107]  Ponnuthurai Nagaratnam Suganthan,et al.  Benchmark Functions for the CEC'2013 Special Session and Competition on Large-Scale Global Optimization , 2008 .

[108]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[109]  X. Yao,et al.  Scaling up fast evolutionary programming with cooperative coevolution , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[110]  Saman K. Halgamuge,et al.  On the Selection of Decomposition Methods for Large Scale Fully Non-separable Problems , 2015, GECCO.

[111]  Sebastian Fischer,et al.  Cognitive Science An Introduction To The Study Of Mind , 2016 .

[112]  Zbigniew Michalewicz,et al.  Quo Vadis, Evolutionary Computation? - On a Growing Gap between Theory and Practice , 2012, WCCI.

[113]  Yuval Davidor,et al.  Epistasis Variance: Suitability of a Representation to Genetic Algorithms , 1990, Complex Syst..

[114]  Xin Yao,et al.  Self-adaptive differential evolution with neighborhood search , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[115]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[116]  Fang-Xiang Wu,et al.  Inference of Biological S-System Using the Separable Estimation Method and the Genetic Algorithm , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[117]  Chao Wang,et al.  High-Dimensional Waveform Inversion With Cooperative Coevolutionary Differential Evolution Algorithm , 2012, IEEE Geoscience and Remote Sensing Letters.

[118]  Xiaodong Li,et al.  Cooperatively Coevolving Particle Swarms for Large Scale Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[119]  Byung-Il Koh,et al.  Limitations of parallel global optimization for large-scale human movement problems. , 2009, Medical engineering & physics.

[120]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[121]  R. Haupt Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors , 2000, IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C.

[122]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[123]  Xin Yao,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008, Inf. Sci..

[124]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[125]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[126]  Ponnuthurai N. Suganthan,et al.  Self-adaptive differential evolution with multi-trajectory search for large-scale optimization , 2011, Soft Comput..

[127]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary aerospace design optimization - Survey of recent developments , 1996 .

[128]  Francisco Herrera,et al.  MA-SW-Chains: Memetic algorithm based on local search chains for large scale continuous global optimization , 2010, IEEE Congress on Evolutionary Computation.

[129]  Antonio LaTorre,et al.  A MOS-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test , 2011, Soft Comput..

[130]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[131]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[132]  Qingfu Zhang,et al.  An orthogonal genetic algorithm for multimedia multicast routing , 1999, IEEE Trans. Evol. Comput..

[133]  P. Toint,et al.  Local convergence analysis for partitioned quasi-Newton updates , 1982 .

[134]  Francisco Herrera,et al.  Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-Chains , 2011, Soft Comput..

[135]  Kazuhiro Seki,et al.  Block coordinate descent algorithms for large-scale sparse multiclass classification , 2013, Machine Learning.

[136]  Bao Zhang,et al.  Layout optimization of satellite module using soft computing techniques , 2008, Appl. Soft Comput..

[137]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[138]  Janez Brest,et al.  Population size reduction for the differential evolution algorithm , 2008, Applied Intelligence.

[139]  Bernhard Sendhoff,et al.  Three dimensional evolutionary aerodynamic design optimization with CMA-ES , 2005, GECCO '05.

[140]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[141]  Chao Wang,et al.  A new differential evolution algorithm with Cooperative Coevolutionary selection operator for waveform inversion , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[142]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[143]  Jim Smith,et al.  An Adaptive Poly-Parental Recombination Strategy , 1995, Evolutionary Computing, AISB Workshop.

[144]  Sujin Bureerat,et al.  Aircraft morphing wing design by using partial topology optimization , 2013 .

[145]  S. Rahnamayan,et al.  Solving large scale optimization problems by opposition-based differential evolution (ODE) , 2008 .

[146]  Matthias Lutz-Bachmann,et al.  Perpetual peace : essays on Kant's cosmopolitan ideal , 1997 .

[147]  Heinz Mühlenbein,et al.  Convergence Theory and Applications of the Factorized Distribution Algorithm , 2015, CIT 2015.

[148]  Carlos A. Coello Coello,et al.  Use of cooperative coevolution for solving large scale multiobjective optimization problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[149]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[150]  Hongfei Teng,et al.  Cooperative Co-evolutionary Differential Evolution for Function Optimization , 2005, ICNC.

[151]  Xiaodong Li,et al.  A novel hybridization of opposition-based learning and cooperative co-evolutionary for large-scale optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[152]  Janez Brest,et al.  High-dimensional real-parameter optimization using Self-Adaptive Differential Evolution algorithm with population size reduction , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[153]  A. Timan Theory of Approximation of Functions of a Real Variable , 1994 .

[154]  Janez Brest,et al.  Differential evolution for parameterized procedural woody plant models reconstruction , 2011, Appl. Soft Comput..

[155]  Thomas Stützle,et al.  Incremental Social Learning in Particle Swarms , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[156]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[157]  Janez Brest,et al.  Large Scale Global Optimization using Differential Evolution with self-adaptation and cooperative co-evolution , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[158]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[159]  Kittipong Boonlong Vibration-Based Damage Detection in Beams by Cooperative Coevolutionary Genetic Algorithm , 2014 .

[160]  Tetsuyuki Takahama,et al.  Large scale optimization by differential evolution with landscape modality detection and a diversity archive , 2012, 2012 IEEE Congress on Evolutionary Computation.

[161]  Xin Yao,et al.  Scalability of generalized adaptive differential evolution for large-scale continuous optimization , 2010, Soft Comput..

[162]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[163]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[164]  Francisco Herrera,et al.  Gradual distributed real-coded genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[165]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[166]  R. Howard,et al.  Local convergence analysis of a grouped variable version of coordinate descent , 1987 .

[167]  Chun Chen,et al.  Multiple trajectory search for Large Scale Global Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[168]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[169]  Eberhard O. Voit,et al.  Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists , 2000 .

[170]  C. T. Kelley,et al.  An Implicit Filtering Algorithm for Optimization of Functions with Many Local Minima , 1995, SIAM J. Optim..