3D Finite Element Meshing from Imaging Data.

This paper describes an algorithm to extract adaptive and quality 3D meshes directly from volumetric imaging data. The extracted tetrahedral and hexahedral meshes are extensively used in the Finite Element Method (FEM). A top-down octree subdivision coupled with the dual contouring method is used to rapidly extract adaptive 3D finite element meshes with correct topology from volumetric imaging data. The edge contraction and smoothing methods are used to improve the mesh quality. The main contribution is extending the dual contouring method to crack-free interval volume 3D meshing with feature sensitive adaptation. Compared to other tetrahedral extraction methods from imaging data, our method generates adaptive and quality 3D meshes without introducing any hanging nodes. The algorithm has been successfully applied to constructing the geometric model of a biomolecule in finite element calculations.

[1]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[2]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[3]  Gregory M. Nielson,et al.  Interval volume tetrahedrization , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[4]  M. Price,et al.  Hexahedral Mesh Generation by Medial Surface Subdivision : Part 2 Solids and Flat Convex Edges , 1997 .

[5]  K. Shimada,et al.  Anisotropic Triangular Meshing of Parametric Surfaces via Close Packing of Ellipsoidal Bubbles , 2007 .

[6]  Houman Borouchaki,et al.  Delaunay Tetrahedralization using an Advancing-Front Approach , 1996 .

[7]  Valerio Pascucci,et al.  Time critical adaptive re - finement and smoothing , 2000 .

[8]  I. Fujishiro,et al.  Volumetric Data Exploration Using Interval Volume , 1996, IEEE Trans. Vis. Comput. Graph..

[9]  Rüdiger Westermann,et al.  Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces , 1999, The Visual Computer.

[10]  A. Conn,et al.  An Efficient Method to Solve the Minimax Problem Directly , 1978 .

[11]  David Eppstein,et al.  Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[12]  J. Shewchuk Two Discrete Optimization Algorithms for the Topological Improvement of Tetrahedral Meshes , 2002 .

[13]  Lori A. Freitag,et al.  On combining Laplacian and optimization-based mesh smoothing techniques , 1997 .

[14]  M. Sabin,et al.  Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex edges , 1995 .

[15]  B. Joe,et al.  Relationship between tetrahedron shape measures , 1994 .

[16]  C. Bajaj,et al.  Tetrahedral meshes from planar cross-sections q , 1999 .

[17]  Paul-Louis George,et al.  Optimization of Tetrahedral Meshes , 1995 .

[18]  Mathieu Desbrun,et al.  Discrete Differential Geometry , 2008 .

[19]  Jonathan Richard Shewchuk,et al.  Constrained Delaunay Tetrahedralizations and Provably Good Boundary Recovery , 2002, IMR.

[20]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[21]  Rainald Löhner,et al.  Three-dimensional grid generation by the advancing front method , 1988 .

[22]  M. Price,et al.  Hexahedral Mesh Generation by Medial Surface Subdivision: Part II. Solids with Flat and Concave Edges , 1997 .

[23]  David E. Breen,et al.  Semi-regular mesh extraction from volumes , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[24]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[25]  L. Paul Chew,et al.  Guaranteed-quality Delaunay meshing in 3D (short version) , 1997, SCG '97.

[26]  Matthew L. Staten,et al.  An Approach to Combined Laplacian and Optimization-Based Smoothing for Triangular, Quadrilateral, and Quad-Dominant Meshes , 1998, IMR.

[27]  R. Schneiders,et al.  A grid-based algorithm for the generation of hexahedral element meshes , 1996, Engineering with Computers.

[28]  V. Pascucci,et al.  Time Critical Isosurface Refinement and Smoothing , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[29]  Herbert Edelsbrunner,et al.  Sliver exudation , 2000, J. ACM.

[30]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[31]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[32]  Mario Botsch,et al.  Feature sensitive surface extraction from volume data , 2001, SIGGRAPH.

[33]  Scott A. Mitchell,et al.  Quality Mesh Generation in Higher Dimensions , 2000, SIAM J. Comput..

[34]  C. Bajaj,et al.  Discrete Surface Modeling using Geometric Flows , 2003 .

[35]  Valerio Pascucci,et al.  Interactive view-dependent rendering of large isosurfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[36]  David E. Breen,et al.  Semi-regular mesh extraction from volumes , 2000 .

[37]  Chandrajit L. Bajaj,et al.  Adaptive and quality 3D meshing from imaging data , 2003, SM '03.

[38]  Gabriel Taubin,et al.  Distance approximations for rasterizing implicit curves , 1994, TOGS.

[39]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[40]  Timothy J. Tautges,et al.  THE WHISKER WEAVING ALGORITHM: A CONNECTIVITY‐BASED METHOD FOR CONSTRUCTING ALL‐HEXAHEDRAL FINITE ELEMENT MESHES , 1996 .

[41]  Chandrajit L. Bajaj,et al.  Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.

[42]  David Eppstein,et al.  Provably Good Mesh Generation , 1994, J. Comput. Syst. Sci..

[43]  Robert S. Laramee,et al.  An Isosurface Continuity Algorithm for Super Adaptive Resolution Data , 2002 .

[44]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.

[45]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[46]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[47]  P. Hansbo Generalized Laplacian smoothing of unstructured grids , 1995 .

[48]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[49]  Paul-Louis George TET MESHING: Construction, Optimization and Adaptation , 1999 .

[50]  Edward J. Coyle,et al.  Arbitrary Topology Shape Reconstruction from Planar Cross Sections , 1996, CVGIP Graph. Model. Image Process..

[51]  Shang-Hua Teng,et al.  Unstructured Mesh Generation: Theory, Practice, and Perspectives , 2000, Int. J. Comput. Geom. Appl..

[52]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[53]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1990, SIGGRAPH 1990.

[54]  Arie E. Kaufman,et al.  Multiresolution tetrahedral framework for visualizing regular volume data , 1997 .

[55]  Valerio Pascucci,et al.  Fast isocontouring for improved interactivity , 1996, VVS '96.

[56]  M. Zagorski,et al.  Sorting out the driving forces for parallel and antiparallel alignment in the abeta peptide fibril structure. , 2004, Biophysical journal.

[57]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[58]  Nathan A. Baker,et al.  Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis. , 2004, Biophysical journal.

[59]  Joe Warren,et al.  Compact Isocontours from sampled Data , 1992, Graphics Gems III.

[60]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[61]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[62]  Jonathan Richard Shewchuk,et al.  Tetrahedral mesh generation by Delaunay refinement , 1998, SCG '98.

[63]  Tamal K. Dey,et al.  Quality meshing with weighted Delaunay refinement , 2002, SODA '02.

[64]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[65]  David Eppstein,et al.  Linear complexity hexahedral mesh generation , 1996, SCG '96.

[66]  Nathan A. Baker,et al.  Finite element solution of the steady-state Smoluchowski equation for rate constant calculations. , 2004, Biophysical journal.

[67]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[68]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[69]  S.F.F. Gibson,et al.  Using distance maps for accurate surface representation in sampled volumes , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[70]  T. Blacker,et al.  Seams and wedges in plastering: A 3-D hexahedral mesh generation algorithm , 1993, Engineering with Computers.

[71]  Eric Seveno,et al.  Towards an Adaptive Advancing Front Method , 1997 .

[72]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[73]  C. Bajaj,et al.  Anisotropic Diffusion of Subdivision Surfaces and Functions on Surfaces , 2001 .

[74]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[75]  Ken Brodlie,et al.  Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing , 2003, IEEE Trans. Vis. Comput. Graph..

[76]  B. Natarajan On generating topologically consistent isosurfaces from uniform samples , 1994, The Visual Computer.