Delayed rFGF21 Administration Improves Cerebrovascular Remodeling and White Matter Repair After Focal Stroke in Diabetic Mice

[1]  Guo-Yuan Yang,et al.  Plasma from healthy donors protects blood–brain barrier integrity via FGF21 and improves the recovery in a mouse model of cerebral ischaemia , 2021, Stroke and vascular neurology.

[2]  Xiaozhen Dai,et al.  FGF21 promotes ischaemic angiogenesis and endothelial progenitor cells function under diabetic conditions in an AMPK/NAD+‐dependent manner , 2021, Journal of cellular and molecular medicine.

[3]  Xiaoying Wang,et al.  Diabetes Mellitus/Poststroke Hyperglycemia: a Detrimental Factor for tPA Thrombolytic Stroke Therapy , 2020, Translational Stroke Research.

[4]  W. Kimberly,et al.  Uric Acid and Gluconic Acid as Predictors of Hyperglycemia and Cytotoxic Injury after Stroke , 2020, Translational stroke research.

[5]  Sherif Hafez,et al.  Deferoxamine Treatment Prevents Post-Stroke Vasoregression and Neurovascular Unit Remodeling Leading to Improved Functional Outcomes in Type 2 Male Diabetic Rats: Role of Endothelial Ferroptosis , 2020, Translational Stroke Research.

[6]  M. Carnethon,et al.  Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. , 2020, The lancet. Diabetes & endocrinology.

[7]  P. Lin,et al.  FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages , 2020, Journal of neuroinflammation.

[8]  Xiaoying Wang,et al.  FGF21 Protects against Aggravated Blood-Brain Barrier Disruption after Ischemic Focal Stroke in Diabetic db/db Male Mice via Cerebrovascular PPARγ Activation , 2020, International journal of molecular sciences.

[9]  M. Chopp,et al.  MiR-126 Mediates Brain Endothelial Cell Exosome Treatment-Induced Neurorestorative Effects After Stroke in Type 2 Diabetes Mellitus Mice. , 2019, Stroke.

[10]  Hiranya Pintana,et al.  Obesity-induced type 2 diabetes impairs neurological recovery after stroke in correlation with decreased neurogenesis and persistent atrophy of parvalbumin-positive interneurons. , 2019, Clinical science.

[11]  M. S. Sajib,et al.  Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology , 2019, Cells.

[12]  Kazumichi Yoshida,et al.  Role of Perivascular Oligodendrocyte Precursor Cells in Angiogenesis After Brain Ischemia , 2019, Journal of the American Heart Association.

[13]  P. Frankland,et al.  Abolition of aberrant neurogenesis ameliorates cognitive impairment after stroke in mice , 2019, The Journal of clinical investigation.

[14]  Guo-Yuan Yang,et al.  MicroRNA-126 Regulates Angiogenesis and Neurogenesis in a Mouse Model of Focal Cerebral Ischemia , 2019, Molecular therapy. Nucleic acids.

[15]  Vincent Thijs,et al.  Prevalence of diabetes and its effects on stroke outcomes: A meta‐analysis and literature review , 2018, Journal of diabetes investigation.

[16]  E. Lo,et al.  Endocrine Regulator rFGF21 (Recombinant Human Fibroblast Growth Factor 21) Improves Neurological Outcomes Following Focal Ischemic Stroke of Type 2 Diabetes Mellitus Male Mice , 2018, Stroke.

[17]  R. Leak,et al.  Diabetes Mellitus Impairs White Matter Repair and Long-Term Functional Deficits After Cerebral Ischemia , 2018, Stroke.

[18]  Matthew J. Potthoff,et al.  Fibroblast Growth Factor 21: A Versatile Regulator of Metabolic Homeostasis. , 2018, Annual review of nutrition.

[19]  E. Lo,et al.  Recombinant FGF21 Protects Against Blood-Brain Barrier Leakage Through Nrf2 Upregulation in Type 2 Diabetes Mice , 2018, Molecular Neurobiology.

[20]  Haiyu Luo,et al.  Growth Differentiation Factor 11 Promotes Neurovascular Recovery After Stroke in Mice , 2018, Front. Cell. Neurosci..

[21]  K. Arai,et al.  White-matter repair: Interaction between oligodendrocytes and the neurovascular unit , 2018, Brain circulation.

[22]  J. Hata,et al.  Insulin resistance and clinical outcomes after acute ischemic stroke , 2018, Neurology.

[23]  E. Lo,et al.  FGF21 Attenuates High-Fat Diet-Induced Cognitive Impairment via Metabolic Regulation and Anti-inflammation of Obese Mice , 2018, Molecular Neurobiology.

[24]  Xiufen Zheng,et al.  Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK2/STAT3 signaling pathway after ischemic stroke in mice , 2017, Journal of neurochemistry.

[25]  T. Yamashita,et al.  Peripherally derived FGF21 promotes remyelination in the central nervous system. , 2017, The Journal of clinical investigation.

[26]  Ping Cai,et al.  ADAMTS13 controls vascular remodeling by modifying VWF reactivity during stroke recovery. , 2017, Blood.

[27]  M. Chopp,et al.  Blood–Brain Barrier Disruption, Vascular Impairment, and Ischemia/Reperfusion Damage in Diabetic Stroke , 2017, Journal of the American Heart Association.

[28]  P. Vanhoutte,et al.  Macro‐ and microvascular endothelial dysfunction in diabetes , 2017, Journal of diabetes.

[29]  M. Chopp,et al.  Diabetes Mellitus Impairs Cognitive Function in Middle-Aged Rats and Neurological Recovery in Middle-Aged Rats After Stroke , 2016, Stroke.

[30]  X. Ji,et al.  White matter injury in ischemic stroke , 2016, Progress in Neurobiology.

[31]  M. Chopp,et al.  MiR‐126 Contributes to Human Umbilical Cord Blood Cell‐Induced Neurorestorative Effects After Stroke in Type‐2 Diabetic Mice , 2016, Stem cells.

[32]  K. Arai,et al.  Mechanisms of cell–cell interaction in oligodendrogenesis and remyelination after stroke , 2015, Brain Research.

[33]  R. Amin,et al.  Central activation of PPAR-gamma ameliorates diabetes induced cognitive dysfunction and improves BDNF expression , 2015, Neurobiology of Aging.

[34]  M. Schwab,et al.  Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain , 2014, Nature Protocols.

[35]  Anthony Dohan,et al.  Diabetic Microangiopathy: Impact of Impaired Cerebral Vasoreactivity and Delayed Angiogenesis After Permanent Middle Cerebral Artery Occlusion on Stroke Damage and Cerebral Repair in Mice , 2014, Diabetes.

[36]  D. Lindholm,et al.  Diabetes drugs and neurological disorders: new views and therapeutic possibilities. , 2014, The lancet. Diabetes & endocrinology.

[37]  J. Huse,et al.  Oligodendrocyte progenitor cells promote neovascularization in glioma by disrupting the blood-brain barrier. , 2014, Cancer research.

[38]  M. Chopp,et al.  Endothelial Nitric Oxide Synthase Regulates White Matter Changes via the BDNF/TrkB Pathway after Stroke in Mice , 2013, PloS one.

[39]  A. Ergul,et al.  Vascularization Pattern After Ischemic Stroke is Different in Control Versus Diabetic Rats: Relevance to Stroke Recovery , 2013, Stroke.

[40]  L. Jing,et al.  Temporal Profile of Astrocytes and Changes of Oligodendrocyte-Based Myelin Following Middle Cerebral Artery Occlusion in Diabetic and Non-diabetic Rats , 2013, International journal of biological sciences.

[41]  J. Beckman,et al.  Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. , 2013, European heart journal.

[42]  A. Ergul,et al.  Angiogenesis: A Harmonized Target for Recovery After Stroke , 2012, Stroke.

[43]  Samuel M. Cohen,et al.  Evaluation of Direct and Indirect Effects of the PPARγ Agonist Troglitazone on Mouse Endothelial Cell Proliferation , 2011, Toxicologic pathology.

[44]  K. Arai,et al.  Vascular Endothelial Growth Factor Regulates the Migration of Oligodendrocyte Precursor Cells , 2011, The Journal of Neuroscience.

[45]  M. Chopp,et al.  Angiopoietin/Tie2 pathway mediates type 2 diabetes induced vascular damage after cerebral stroke , 2011, Neurobiology of Disease.

[46]  E. Lo,et al.  Decreased Cerebrovascular Brain-Derived Neurotrophic Factor–Mediated Neuroprotection in the Diabetic Brain , 2011, Diabetes.

[47]  N. Chinookoswong,et al.  Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models--association with liver and adipose tissue effects. , 2009, American journal of physiology. Endocrinology and metabolism.

[48]  K. Arai,et al.  An Oligovascular Niche: Cerebral Endothelial Cells Promote the Survival and Proliferation of Oligodendrocyte Precursor Cells , 2009, The Journal of Neuroscience.

[49]  M. Chopp,et al.  Role of endothelial nitric oxide synthetase in arteriogenesis after stroke in mice , 2009, Neuroscience.

[50]  D. Dupret,et al.  Adult hippocampal neurogenesis is involved in anxiety-related behaviors , 2009, Molecular Psychiatry.

[51]  Ru-Fang Yeh,et al.  miR-126 regulates angiogenic signaling and vascular integrity. , 2008, Developmental cell.

[52]  W. Young,et al.  Insulin Growth Factor-1 Gene Transfer Enhances Neurovascular Remodeling and Improves Long-Term Stroke Outcome in Mice , 2008, Stroke.

[53]  M. Mattson,et al.  Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons , 2008, Nature Neuroscience.

[54]  W. Pan,et al.  The fasting polypeptide FGF21 can enter brain from blood , 2007, Peptides.

[55]  M. Chopp,et al.  Angiopoietin1/TIE2 and VEGF/FLK1 Induced by MSC Treatment Amplifies Angiogenesis and Vascular Stabilization after Stroke , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[56]  S. Carmichael,et al.  A Neurovascular Niche for Neurogenesis after Stroke , 2006, The Journal of Neuroscience.

[57]  René Hen,et al.  Hippocampal Neurogenesis: Regulation by Stress and Antidepressants , 2006, Biological Psychiatry.

[58]  B. Rosen,et al.  Role of matrix metalloproteinases in delayed cortical responses after stroke , 2006, Nature Medicine.

[59]  J. Gromada,et al.  FGF-21 as a novel metabolic regulator. , 2005, The Journal of clinical investigation.

[60]  K. Walsh,et al.  AMP-Activated Protein Kinase Signaling Stimulates VEGF Expression and Angiogenesis in Skeletal Muscle , 2005, Circulation research.

[61]  M. Chopp,et al.  Endothelial Nitric Oxide Synthase Regulates Brain-Derived Neurotrophic Factor Expression and Neurogenesis after Stroke in Mice , 2005, The Journal of Neuroscience.

[62]  J. Beckman,et al.  Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I , 2013, European heart journal.

[63]  M E Moseley,et al.  Evolution of cerebral infarct volume assessed by diffusion-weighted magnetic resonance imaging. , 2001, Archives of neurology.

[64]  T. Acker,et al.  Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. , 2000, The American journal of pathology.