Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation

A new and very general technique for simulating solid-fluid suspensions is described ; its most important feature is that the computational cost scales linearly with the number of particles. The method combines Newtonian dynamics of the solid particles with a discretized Boltzmann equation for the fluid phase; the many-body hydrodynamic interactions are fully accounted for, both in the creeping-flow regime and at higher Reynolds numbers. Brownian motion of the solid particles arises spontaneously from stochastic fluctuations in the fluid stress tensor, rather than from random forces or displacements applied directly to the particles. In this paper, the theoretical foundations of the technique are laid out, illustrated by simple analytical and numerical examples; in a companion paper (Part 2), extensive numerical tests of the method, for stationary flows, time-dependent flows, and finite-Reynolds-number flows, are reported.

[1]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[2]  H. Hasimoto On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres , 1959, Journal of Fluid Mechanics.

[3]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[4]  George Keith Batchelor,et al.  An Introduction to Fluid Dynamics. , 1969 .

[5]  Jerome K. Percus,et al.  Ensemble Dependence of Fluctuations with Application to Machine Computations , 1967 .

[6]  B. Alder,et al.  Decay of the Velocity Autocorrelation Function , 1970 .

[7]  G. Batchelor Sedimentation in a dilute dispersion of spheres , 1972, Journal of Fluid Mechanics.

[8]  A. Martin-Löf,et al.  Fluctuating hydrodynamics and Brownian motion , 1973 .

[9]  E. J. Hinch,et al.  Application of the Langevin equation to fluid suspensions , 1975, Journal of Fluid Mechanics.

[10]  Graeme A. Bird,et al.  Molecular Gas Dynamics , 1976 .

[11]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[12]  Wing Kam Liu,et al.  Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation , 1979 .

[13]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[14]  William G. Hoover,et al.  Lennard-Jones triple-point bulk and shear viscosities. Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics , 1980 .

[15]  George M. Homsy,et al.  Stokes flow through periodic arrays of spheres , 1982, Journal of Fluid Mechanics.

[16]  Andreas Acrivos,et al.  Slow flow past periodic arrays of cylinders with application to heat transfer , 1982 .

[17]  S M Yen,et al.  NUMERICAL SOLUTION OF THE NONLINEAR BOLTZMANN EQUATION FOR NONEQUILIBRIUM GAS FLOW PROBLEMS , 1984 .

[18]  A. Ladd Equations of motion for non-equilibrium molecular dynamics simulations of viscous flow in molecular fluids , 1984 .

[19]  Hsueh-Chia Chang,et al.  High Reynolds number flow through cubic arrays of spheres: steady-state solution and transition to turbulence , 1985 .

[20]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[21]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[22]  John F. Brady,et al.  Self-diffusion of Brownian particles in concentrated suspensions under shear , 1987 .

[23]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[24]  Louis J. Durlofsky,et al.  Dynamic simulation of hydrodynamically interacting particles , 1987, Journal of Fluid Mechanics.

[25]  Anthony J. C. Ladd,et al.  Hydrodynamic interactions in a suspension of spherical particles , 1988 .

[26]  John F. Brady,et al.  Hydrodynamic transport properties of hard-sphere dispersions. II. Porous media , 1988 .

[27]  A. Fogelson,et al.  A fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles , 1988 .

[28]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[29]  Ladd,et al.  Application of lattice-gas cellular automata to the Brownian motion of solids in suspension. , 1988, Physical review letters.

[30]  Nondiffusive Brownian motion studied by diffusing-wave spectroscopy. , 1989, Physical review letters.

[31]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[32]  C. Brooks Computer simulation of liquids , 1989 .

[33]  Zanetti,et al.  Hydrodynamics of lattice-gas automata. , 1989, Physical review. A, General physics.

[34]  Thanh Tran-Cong,et al.  Stokes problems of multiparticle systems: A numerical method for arbitrary flows , 1989 .

[35]  Dynamics of colloidal dispersions via lattice-gas models of an incompressible fluid , 1989 .

[36]  Seppo Karrila,et al.  Parallel Computational Strategies for Hydrodynamic Interactions Between Rigid Particles of Arbitrary Shape in a Viscous Fluid , 1989 .

[37]  G. Bird The Direct Simulation Monte Carlo Method: Current Status and Perspectives , 1990 .

[38]  Daan Frenkel,et al.  Dissipative hydrodynamic interactions via lattice‐gas cellular automata , 1990 .

[39]  D. Levermore,et al.  A Knudsen layer theory for lattice gases , 1991 .

[40]  Anthony J. C. Ladd,et al.  Hydrodynamic transport coefficients of random dispersions of hard spheres , 1990 .

[41]  A. Ladd Dissipative and Fluctuating Hydrodynamic Interactions between Suspended Solid Particles via Lattice-Gas Cellular Automata , 1991 .

[42]  Ladd,et al.  Self-diffusion of colloidal particles in a two-dimensional suspension: Are deviations from Fick's law experimentally observable? , 1991, Physical review letters.

[43]  J. Brackbill,et al.  A numerical method for suspension flow , 1991 .

[44]  B. Fornberg Steady incompressible flow past a row of circular cylinders , 1991, Journal of Fluid Mechanics.

[45]  Müller,et al.  Scaling of transient hydrodynamic interactions in concentrated suspensions. , 1992, Physical review letters.

[46]  Shiyi Chen,et al.  Lattice Boltzmann computational fluid dynamics in three dimensions , 1992 .

[47]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[48]  Daan Frenkel,et al.  Study of diffusion in lattice-gas fluids and colloids , 1993 .

[49]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[50]  Berni J. Alder,et al.  Lattice Boltzmann simulation of high Reynolds number fluid flow in two dimensions , 1993 .

[51]  J. Koelman,et al.  Dynamic simulations of hard-sphere suspensions under steady shear , 1993 .

[52]  A. Ladd Dynamical simulations of sedimenting spheres , 1993 .

[53]  Yodh,et al.  Observation of Brownian motion on the time scale of hydrodynamic interactions. , 1993, Physical review letters.

[54]  Ladd Short-time motion of colloidal particles: Numerical simulation via a fluctuating lattice-Boltzmann equation. , 1993, Physical review letters.

[55]  B. Alder,et al.  Analysis of the lattice Boltzmann treatment of hydrodynamics , 1993 .

[56]  J. Brady,et al.  The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number , 1993, Journal of Fluid Mechanics.

[57]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.