Multiplicatively large sets and ergodic Ramsey theory

Multiplicatively large sets are defined in (ℕ, ·) by an analogy to sets of positive upper density in (ℕ, +). By utilizing various ergodic multiple recurrence theorems, we show that multiplicatively large sets have a rich combinatorial structure. In particular, it is proved that for any multiplicatively large setE ⊂ ℕ and anyk ∈ ℕ, there existsa,b,c,d,e,q ∈ ℕ such that {fx23-1}

[1]  A. Khinchin Three Pearls of Number Theory , 1952 .

[2]  Vitaly Bergelson Topics in Dynamics and Ergodic Theory: Minimal idempotents and ergodic Ramsey theory , 2003 .

[3]  A. Leibman Multiple Recurrence Theorem for Measure Preserving Actions of a Nilpotent Group , 1998 .

[4]  Vitaly Bergelson,et al.  Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .

[5]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for IP-systems and combinatorial theory , 1985 .

[6]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[7]  E. Szemerédi On sets of integers containing no four elements in arithmetic progression , 1969 .

[8]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for commuting transformations , 1978 .

[9]  Neil Hindman,et al.  A combinatorially large cell of a partition of N , 1988, J. Comb. Theory, Ser. A.

[10]  Neil Hindman,et al.  Additive and Multiplicative Ramsey Theorems in N-Some Elementary Results , 1993, Comb. Probab. Comput..

[11]  B. Host,et al.  ASPECTS OF UNIFORMITY IN RECURRENCE , 2000 .

[12]  Benjamin Weiss,et al.  Topological dynamics and combinatorial number theory , 1978 .

[13]  V. Bergelson,et al.  Topological multiple recurrence for polynomial configurations in nilpotent groups , 2003 .

[14]  Benjamin Weiss,et al.  Markov Processes and Ramsey Theory for Trees , 2003, Combinatorics, Probability and Computing.

[15]  A. Khintchine,et al.  Eine Verschärfung des Poincaréschen “Wiederkehrsatzes” , 1935 .

[16]  H. Furstenberg,et al.  A density version of the Hales-Jewett theorem , 1991 .

[17]  Vitaly Bergelson,et al.  Set-polynomials and polynomial extension of the Hales-Jewett Theorem , 1999 .

[18]  Neil Hindman,et al.  Algebra in the Stone-Cech Compactification: Theory and Applications , 1998 .

[19]  Neil Hindman,et al.  Finite Sums from Sequences Within Cells of a Partition of N , 1974, J. Comb. Theory, Ser. A.

[20]  V. Bergelson Sets of Recurrence of Zm-Actions and Properties of Sets of Differences in Zm , 1985 .