Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics

This work presents the structural and spectroscopic characterization of transparent lead lanthanum zirconate titanate ceramics doped with Nd3+, Er3+, or Yb3+ ions. High optical quality samples presenting the perovskite structure were prepared through a mixed oxides method followed by conventional sintering or uniaxial hot pressing. Absorption and luminescence spectra were measured, and radiative emission parameters were calculated for Nd3+- and Er3+-doped samples. The results indicate the potential of these polycrystalline host–ion combinations for the construction of diode-pumped lasers in the near-infrared region.

[1]  Yong Gyu Choi,et al.  Emission properties of the transition in Er3+- and Er3+/Tm3+-doped Ge–Ga–As–S glasses , 2000 .

[2]  I. Pracka,et al.  Spectroscopic properties and exicted-state relaxation dynamics of Er3+ in LiNbO3 , 1994 .

[3]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[4]  Akio Ikesue,et al.  Fabrication and Optical Properties of High‐Performance Polycrystalline Nd:YAG Ceramics for Solid‐State Lasers , 1995 .

[5]  B. Viana,et al.  Optical characterization of Nd 3+ doped sulphide glasses , 1997 .

[6]  M. Bell,et al.  On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses , 1999 .

[7]  M. Morita,et al.  Near-infrared luminescence and spectral anomaly in PLZT ceramics doped with Nd3+, Er3+, Yb3+ and Cr5+ ions at low temperatures , 2000 .

[8]  K. Rajnak,et al.  Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ , 1968 .

[9]  Young-Sik Hong,et al.  Structural and Dielectric Properties of PLZT Ceramics Modified with Lanthanide Ions , 2004 .

[10]  H. Y. Lee,et al.  Emission and excitation spectra of thermally diffused ions in PLZT ceramics , 1990 .

[11]  Makoto Morita,et al.  Photoluminescence properties of Eu3+, Nd3+-codoped PLZT ceramics involving energy-transfer processes , 1995 .

[12]  Renata Reisfeld,et al.  Judd-Ofelt parameters and chemical bonding☆ , 1983 .

[13]  G. Burns,et al.  Vibrational modes in (Pb,La)(Zr,Ti)O3 ceramics , 1974 .

[14]  M. Morita,et al.  Photoluminescence and decay profiles of undoped and Fe3+, Eu3+-doped PLZT ceramics at low temperatures down to 10 K , 2000 .

[15]  M. Bell,et al.  Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses , 2001 .

[16]  K. H. Chen,et al.  Selective-area growth of indium nitride nanowires on gold-patterned Si(100) substrates , 2002 .

[17]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[18]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[19]  Younes Messaddeq,et al.  Blue cooperative luminescence in Yb3+-doped tellurite glasses excited at 1.064 μm , 2002 .

[20]  D. Viehland,et al.  A polarized Raman study of the relaxor and ferroelectric states of La-modified lead zirconate titanate ceramics , 1997 .

[21]  John Ballato,et al.  Phonon sideband spectroscopy and 1550 nm luminescence from Eu3+ and Er3+-doped ferroelectric PLZT for active electro-optic applications , 2000 .

[22]  N. Olsson,et al.  Erbium-Doped Fiber Amplifiers: Fundamentals and Technology , 1999 .

[23]  Akio Ikesue,et al.  Polycrystalline Nd:YAG ceramics lasers , 2002 .

[24]  D. Hewak,et al.  Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses , 2001 .

[25]  J. Dellis,et al.  A Raman and dielectric susceptibility study of superparaelectric PLZT ceramics , 1994 .

[26]  K. Rajnak,et al.  Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+ , 1968 .