Fingerprints of heavy scales in electroweak effective Lagrangians

[1]  Ran Huo Effective field theory of integrating out sfermions in the MSSM: Complete one-loop analysis , 2015, 1509.05942.

[2]  I. A. Monroy,et al.  Measurements of the branching fractions of Λc+ → pπ−π+, Λc+ → pK−K+, and Λc+ → pπ−K+ , 2017, Journal of High Energy Physics.

[3]  A. Celis,et al.  Standard model extended by a heavy singlet: Linear vs. nonlinear EFT , 2016, 1608.03564.

[4]  A. Marrani,et al.  D = 3 unification of curious supergravities , 2016, 1610.08800.

[5]  J. Fuentes-Martín,et al.  Integrating out heavy particles with functional methods: a simplified framework , 2016, 1607.02142.

[6]  E. Jenkins,et al.  Geometry of the scalar sector , 2016, 1605.03602.

[7]  G. Passarino,et al.  Low energy behaviour of standard model extensions , 2016, 1603.03660.

[8]  Z. Kunszt,et al.  One-loop effective lagrangians after matching , 2016, 1602.00126.

[9]  John Ellis,et al.  The universal one-loop effective action , 2015, 1512.03003.

[10]  E. Jenkins,et al.  A geometric formulation of Higgs Effective Field Theory: Measuring the curvature of scalar field space , 2015, 1511.00724.

[11]  A. Pich,et al.  Low-energy signals of strongly-coupled electroweak symmetry-breaking scenarios , 2015, 1510.03114.

[12]  J. Brehmer,et al.  Pushing Higgs Effective Theory to its Limits , 2015, 1510.03443.

[13]  T. Corbett,et al.  Inverse amplitude method for the perturbative electroweak symmetry breaking sector: The singlet Higgs portal as a study case , 2015, 1509.01585.

[14]  J. Wudka,et al.  Effective field theory analysis of Higgs naturalness , 2015 .

[15]  F. Guo,et al.  One loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson , 2015, 1506.04204.

[16]  Ran Huo Standard model effective field theory: integrating out vector-like fermions , 2015, 1506.00840.

[17]  A. Pich ICHEP 2014 Summary: Theory Status after the First LHC Run , 2015, 1505.01813.

[18]  J. Ellis,et al.  Comparing EFT and exact one-loop analyses of non-degenerate stops , 2015, 1504.02409.

[19]  M. Chala,et al.  Observable effects of general new scalar particles , 2014, 1412.8480.

[20]  JiJi Fan,et al.  Precision natural SUSY at CEPC, FCC-ee, and ILC , 2014, 1412.3107.

[21]  H. Murayama,et al.  How to use the Standard Model effective field theory , 2014, 1412.1837.

[22]  M. B. Gavela,et al.  On the renormalization of the electroweak chiral Lagrangian with a Higgs , 2014, 1409.1571.

[23]  Scoap One-loop γγ → W L + W L − and γγ → Z L Z L from the Electroweak Chiral Lagrangian with a light Higgs-like scalar , 2014 .

[24]  G. Ecker,et al.  Mesonic Low-Energy Constants , 2014, 1405.6488.

[25]  R. Delgado,et al.  One-loop γγ → WL+WL− and γγ → ZLZL from the Electroweak Chiral Lagrangian with a light Higgs-like scalar , 2014, Journal of High Energy Physics.

[26]  D. Espriu,et al.  Unitarity and causality constraints in composite Higgs models , 2014, 1403.7386.

[27]  O. Catà Lurking pseudovectors below the TeV scale , 2014, The European physical journal. C, Particles and fields.

[28]  Duccio Pappadopulo,et al.  Heavy vector triplets: bridging theory and data , 2014, Journal of High Energy Physics.

[29]  O. Catà,et al.  On the power counting in effective field theories , 2013, 1312.5624.

[30]  R. Delgado,et al.  One-loop WLWL and ZLZL scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar , 2013, 1311.5993.

[31]  Claudius Krause,et al.  Complete electroweak chiral Lagrangian with a light Higgs at NLO , 2013, 1307.5017.

[32]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology , 2013, Journal of High Energy Physics.

[33]  A. Bodek,et al.  Working Group Report: Precision Study of Electroweak Interactions , 2013 .

[34]  P. Janot,et al.  Study of Electroweak Interactions at the Energy Frontier , 2013, 1310.6708.

[35]  A. Pich,et al.  Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs , 2013, 1310.3121.

[36]  R. Delgado,et al.  Light 'Higgs', yet strong interactions , 2013, 1308.1629.

[37]  D. Espriu,et al.  Radiative corrections to WL WL scattering in composite Higgs models , 2013, 1307.2400.

[38]  A. Pich,et al.  Viability of strongly coupled scenarios with a light Higgs-like boson. , 2012, Physical review letters.

[39]  D. Espriu,et al.  Longitudinal WW scattering in light of the “Higgs boson” discovery , 2012, 1212.4158.

[40]  M. B. Gavela,et al.  The Effective Chiral Lagrangian for a Light Dynamical "Higgs" , 2012, 1212.3305.

[41]  M. Baak,et al.  The electroweak fit of the standard model after the discovery of a new boson at the LHC , 2012, The European Physical Journal C.

[42]  Fen Zuo,et al.  Holography, chiral Lagrangian and form factor relations , 2012, 1301.2989.

[43]  A. Pich,et al.  One-loop calculation of the oblique S parameter in higgsless electroweak models , 2012, 1209.2269.

[44]  J. Portolés,et al.  Zeros of the WLZL → WLZL amplitude: where vector resonances stand , 2012, 1205.4682.

[45]  O. Catà,et al.  Effective theory of a dynamically broken electroweak Standard Model at NLO , 2012, 1203.6510.

[46]  A. Pich The Standard Model of Electroweak Interactions , 1994, hep-ph/0502010.

[47]  Duccio Pappadopulo,et al.  On the effect of resonances in composite Higgs phenomenology , 2011, 1109.1570.

[48]  A. Pich,et al.  The vector form factor at the next-to-leading order in 1/NC: chiral couplings L9(μ) and C88(μ) − C90(μ) , 2010, 1011.5771.

[49]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[50]  J. Blas,et al.  Electroweak limits on general new vector bosons , 2010, 1005.3998.

[51]  J. Blas,et al.  Effects of new leptons in electroweak precision data , 2008, 0803.4008.

[52]  A. Pich,et al.  Form-factors and current correlators: chiral couplings L10r(μ) and C87r(μ) at NLO in 1/NC , 2008, 0803.1567.

[53]  A. Manohar,et al.  Dispersion Relation Bounds for pi pi Scattering , 2008, 0801.3222.

[54]  A. Pich,et al.  Form-factors and current correlators : chiral couplings L r 10 ( μ ) and C r 87 ( μ ) at NLO in 1 / N C , 2008 .

[55]  B. Grinstein,et al.  Higgs-Higgs bound state due to new physics at a TeV , 2007, 0704.1505.

[56]  R. Rattazzi,et al.  The Strongly-Interacting Light Higgs , 2007, hep-ph/0703164.

[57]  K. Kampf,et al.  On different lagrangian formalisms for vector resonances within chiral perturbation theory , 2006, hep-ph/0608051.

[58]  A. Pich,et al.  Towards a determination of the chiral couplings at NLO in 1 / N C : L r 8 ( μ ) and C r 38 ( μ ) , 2007 .

[59]  M. Pierini,et al.  The unitarity triangle fit in the standard model and hadronic parameters from lattice QCD: a reappraisal after the measurements of Δms and BR(B→τντ) , 2006, hep-ph/0606167.

[60]  Austria,et al.  Towards a consistent estimate of the chiral low-energy constants , 2006, hep-ph/0603205.

[61]  R. Rattazzi,et al.  Causality, analyticity and an IR obstruction to UV completion , 2006, hep-th/0602178.

[62]  J. Stern,et al.  Lepton-number violation and right-handed neutrinos in Higgsless effective theories , 2005, hep-ph/0504277.

[63]  A. Pich,et al.  The Green function and SU(3) breaking in Kl3 decays , 2005, hep-ph/0503108.

[64]  A. Pich,et al.  The 〈 SPP 〉 Green Function and SU ( 3 ) Breaking in K l 3 Decays ∗ , 2005 .

[65]  A. Pich,et al.  Quantum Loops in the Resonance Chiral Theory: The Vector Form Factor , 2004, hep-ph/0407240.

[66]  Caltech,et al.  Green function in the resonance region , 2004, hep-ph/0404004.

[67]  A. Pich,et al.  Odd-intrinsic-parity processes within the resonance effective theory of QCD , 2003, hep-ph/0306157.

[68]  K. Yamawaki,et al.  Hidden Local Symmetry at Loop -- A New Perspective of Composite Gauge Boson and Chiral Phase Transition -- , 2003, hep-ph/0302103.

[69]  G. D’Ambrosio,et al.  Minimal flavour violation: an effective field theory approach , 2002, hep-ph/0207036.

[70]  A. Pich Colourless Mesons in a Polychromatic World , 2002, hep-ph/0205030.

[71]  L. Girlanda,et al.  The anomalous chiral Lagrangian of order $p^6$ , 2001, hep-ph/0110400.

[72]  D. Espriu,et al.  CP violation and family mixing in the effective electroweak Lagrangian , 2000, hep-ph/0011036.

[73]  J. Santiago,et al.  Observable contributions of new exotic quarks to quark mixing , 2000, hep-ph/0007316.

[74]  A. Pich,et al.  Electromagnetism in nonleptonic weak interactions , 2000, hep-ph/0006172.

[75]  G. Colangelo,et al.  Renormalization of chiral perturbation theory to order p**6 , 1999, hep-ph/9907333.

[76]  G. Colangelo,et al.  The mesonic chiral lagrangean of order p 6 , 1999, hep-ph/9902437.

[77]  E. Bagan,et al.  Effective electroweak chiral Lagrangian: The matter sector , 1998, hep-ph/9809237.

[78]  A. Pich Effective field theory: Course , 1998 .

[79]  J. Bijnens,et al.  On the tensor formulation of effective vector lagrangians and duality transformations , 1995, hep-ph/9510338.

[80]  J. Latorre,et al.  Constraints on chiral perturbation theory parameters from QCD inequalities , 1995, hep-ph/9507258.

[81]  A. Pich,et al.  Chiral perturbation theory , 1995, hep-ph/9502366.

[82]  M. Pennington,et al.  The chiral lagrangian parameters, , , are determined by the ϱ-resonance , 1995 .

[83]  J. Bijnens,et al.  Chiral perturbation theory , 1999, hep-ph/9912548.

[84]  Res Urech,et al.  Virtual photons in chiral perturbation theory , 1994, hep-ph/9405341.

[85]  M. Pennington,et al.  The Chiral Lagrangian parameters, $\overline{\ell}_1$, $\overline{\ell}_2$, are determined by the $\rho$--resonance , 1994, hep-ph/9409426.

[86]  M. Bilenky,et al.  One-loop effective lagrangian for an extension of the standard model with a heavy charged scalar singlet , 1993, Nuclear Physics B.

[87]  M. Herrero,et al.  The Electroweak chiral Lagrangian for the Standard Model with a heavy Higgs , 1993, hep-ph/9308276.

[88]  A. Deandrea,et al.  The extended BESS model: bounds from precision electroweak measurements☆ , 1992, hep-ph/9209290.

[89]  Howard Georgi,et al.  Effective Field Theory , 1993 .

[90]  K. Yamawaki,et al.  Hidden local symmetry at one loop , 1992, hep-ph/9210208.

[91]  Takeuchi,et al.  Estimation of oblique electroweak corrections. , 1992, Physical review. D, Particles and fields.

[92]  Takeuchi,et al.  New constraint on a strongly interacting Higgs sector. , 1990, Physical review letters.

[93]  A. Pich,et al.  The Role of Resonances in Chiral Perturbation Theory , 1989 .

[94]  A. Pich,et al.  Chiral lagrangians for massive spin-1 fields , 1989 .

[95]  R. Gatto,et al.  Vector and Axial-Vector Bound States from a Strongly Interacting Electroweak Sector , 1989 .

[96]  K. Yamawaki,et al.  Nonlinear Realization and Hidden Local Symmetries , 1988 .

[97]  U. Meissner Low-energy hadron physics from effective chiral Lagrangians with vector mesons , 1988 .

[98]  D. Wyler,et al.  Effective lagrangian analysis of new interactions and flavour conservation , 1986 .

[99]  Pham,et al.  Evaluation of the derivative quartic terms of the meson chiral Lagrangian from forward dispersion relations. , 1985, Physical review. D, Particles and fields.

[100]  R. Gatto,et al.  Effective weak interaction theory with a possible new vector resonance from a strong higgs sector , 1985 .

[101]  Hauser,et al.  Breaking of isospin symmetry in theories with a dynamical Higgs mechanism. , 1985, Physical review. D, Particles and fields.

[102]  Uehara,et al.  Is the rho meson a dynamical gauge boson of hidden local symmetry? , 1985, Physical review letters.

[103]  Heinrich Leutwyler,et al.  Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark , 1985 .

[104]  H. Leutwyler,et al.  Low-energy expansion of meson form factors , 1985 .

[105]  H. Leutwyler,et al.  η → 3π to one loop☆ , 1985 .

[106]  Heinrich Leutwyler,et al.  Chiral perturbation theory to one loop , 1984 .

[107]  H. Georgi,et al.  Chiral quarks and the non-relativistic quark model , 1984 .

[108]  A. C. Longhitano Low-energy impact of a heavy Higgs boson sector , 1981 .

[109]  S. Drell,et al.  Summary Talk* , 1981 .

[110]  L. F. Abbott,et al.  Effective Hamiltonian for nucleon decay , 1980 .

[111]  Leonard Susskind,et al.  Isospin breaking in technicolor models , 1980 .

[112]  A. C. Longhitano Heavy Higgs bosons in the Weinberg-Salam model , 1980 .

[113]  T. Appelquist,et al.  Strongly interacting Higgs bosons , 1980 .

[114]  Steven Weinberg,et al.  Baryon and Lepton Nonconserving Processes , 1979 .

[115]  F. Wilczek,et al.  Operator Analysis of Nucleon Decay , 1979 .

[116]  G. Senjanovic,et al.  Exact Left-Right Symmetry and Spontaneous Violation of Parity , 1975 .

[117]  A. Duncan,et al.  Exact Spectral Function Sum Rules , 1975 .

[118]  W. E. Kock,et al.  Holography , 1971, Science.

[119]  Julius Wess,et al.  STRUCTURE OF PHENOMENOLOGICAL LAGRANGIANS. II. , 1969 .

[120]  S. Weinberg Precise Relations between the Spectra of Vector and Axial-Vector Mesons , 1967 .

[121]  J. A. Schouten Tensor analysis for physicists , 1955 .

[122]  Illtyd Trethowan Causality , 1938 .