Fingerprints of heavy scales in electroweak effective Lagrangians
暂无分享,去创建一个
A. Pich | I. Rosell | Antonio Pich | Ignasi Rosell | Joaquín Santos | Juan José Sanz-Cillero | J. J. Sanz-Cillero | Joaqu'in Santos
[1] Ran Huo. Effective field theory of integrating out sfermions in the MSSM: Complete one-loop analysis , 2015, 1509.05942.
[2] I. A. Monroy,et al. Measurements of the branching fractions of Λc+ → pπ−π+, Λc+ → pK−K+, and Λc+ → pπ−K+ , 2017, Journal of High Energy Physics.
[3] A. Celis,et al. Standard model extended by a heavy singlet: Linear vs. nonlinear EFT , 2016, 1608.03564.
[4] A. Marrani,et al. D = 3 unification of curious supergravities , 2016, 1610.08800.
[5] J. Fuentes-Martín,et al. Integrating out heavy particles with functional methods: a simplified framework , 2016, 1607.02142.
[6] E. Jenkins,et al. Geometry of the scalar sector , 2016, 1605.03602.
[7] G. Passarino,et al. Low energy behaviour of standard model extensions , 2016, 1603.03660.
[8] Z. Kunszt,et al. One-loop effective lagrangians after matching , 2016, 1602.00126.
[9] John Ellis,et al. The universal one-loop effective action , 2015, 1512.03003.
[10] E. Jenkins,et al. A geometric formulation of Higgs Effective Field Theory: Measuring the curvature of scalar field space , 2015, 1511.00724.
[11] A. Pich,et al. Low-energy signals of strongly-coupled electroweak symmetry-breaking scenarios , 2015, 1510.03114.
[12] J. Brehmer,et al. Pushing Higgs Effective Theory to its Limits , 2015, 1510.03443.
[13] T. Corbett,et al. Inverse amplitude method for the perturbative electroweak symmetry breaking sector: The singlet Higgs portal as a study case , 2015, 1509.01585.
[14] J. Wudka,et al. Effective field theory analysis of Higgs naturalness , 2015 .
[15] F. Guo,et al. One loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson , 2015, 1506.04204.
[16] Ran Huo. Standard model effective field theory: integrating out vector-like fermions , 2015, 1506.00840.
[17] A. Pich. ICHEP 2014 Summary: Theory Status after the First LHC Run , 2015, 1505.01813.
[18] J. Ellis,et al. Comparing EFT and exact one-loop analyses of non-degenerate stops , 2015, 1504.02409.
[19] M. Chala,et al. Observable effects of general new scalar particles , 2014, 1412.8480.
[20] JiJi Fan,et al. Precision natural SUSY at CEPC, FCC-ee, and ILC , 2014, 1412.3107.
[21] H. Murayama,et al. How to use the Standard Model effective field theory , 2014, 1412.1837.
[22] M. B. Gavela,et al. On the renormalization of the electroweak chiral Lagrangian with a Higgs , 2014, 1409.1571.
[23] Scoap. One-loop γγ → W L + W L − and γγ → Z L Z L from the Electroweak Chiral Lagrangian with a light Higgs-like scalar , 2014 .
[24] G. Ecker,et al. Mesonic Low-Energy Constants , 2014, 1405.6488.
[25] R. Delgado,et al. One-loop γγ → WL+WL− and γγ → ZLZL from the Electroweak Chiral Lagrangian with a light Higgs-like scalar , 2014, Journal of High Energy Physics.
[26] D. Espriu,et al. Unitarity and causality constraints in composite Higgs models , 2014, 1403.7386.
[27] O. Catà. Lurking pseudovectors below the TeV scale , 2014, The European physical journal. C, Particles and fields.
[28] Duccio Pappadopulo,et al. Heavy vector triplets: bridging theory and data , 2014, Journal of High Energy Physics.
[29] O. Catà,et al. On the power counting in effective field theories , 2013, 1312.5624.
[30] R. Delgado,et al. One-loop WLWL and ZLZL scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar , 2013, 1311.5993.
[31] Claudius Krause,et al. Complete electroweak chiral Lagrangian with a light Higgs at NLO , 2013, 1307.5017.
[32] Michael Trott,et al. Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology , 2013, Journal of High Energy Physics.
[33] A. Bodek,et al. Working Group Report: Precision Study of Electroweak Interactions , 2013 .
[34] P. Janot,et al. Study of Electroweak Interactions at the Energy Frontier , 2013, 1310.6708.
[35] A. Pich,et al. Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs , 2013, 1310.3121.
[36] R. Delgado,et al. Light 'Higgs', yet strong interactions , 2013, 1308.1629.
[37] D. Espriu,et al. Radiative corrections to WL WL scattering in composite Higgs models , 2013, 1307.2400.
[38] A. Pich,et al. Viability of strongly coupled scenarios with a light Higgs-like boson. , 2012, Physical review letters.
[39] D. Espriu,et al. Longitudinal WW scattering in light of the “Higgs boson” discovery , 2012, 1212.4158.
[40] M. B. Gavela,et al. The Effective Chiral Lagrangian for a Light Dynamical "Higgs" , 2012, 1212.3305.
[41] M. Baak,et al. The electroweak fit of the standard model after the discovery of a new boson at the LHC , 2012, The European Physical Journal C.
[42] Fen Zuo,et al. Holography, chiral Lagrangian and form factor relations , 2012, 1301.2989.
[43] A. Pich,et al. One-loop calculation of the oblique S parameter in higgsless electroweak models , 2012, 1209.2269.
[44] J. Portolés,et al. Zeros of the WLZL → WLZL amplitude: where vector resonances stand , 2012, 1205.4682.
[45] O. Catà,et al. Effective theory of a dynamically broken electroweak Standard Model at NLO , 2012, 1203.6510.
[46] A. Pich. The Standard Model of Electroweak Interactions , 1994, hep-ph/0502010.
[47] Duccio Pappadopulo,et al. On the effect of resonances in composite Higgs phenomenology , 2011, 1109.1570.
[48] A. Pich,et al. The vector form factor at the next-to-leading order in 1/NC: chiral couplings L9(μ) and C88(μ) − C90(μ) , 2010, 1011.5771.
[49] M. Misiak,et al. Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.
[50] J. Blas,et al. Electroweak limits on general new vector bosons , 2010, 1005.3998.
[51] J. Blas,et al. Effects of new leptons in electroweak precision data , 2008, 0803.4008.
[52] A. Pich,et al. Form-factors and current correlators: chiral couplings L10r(μ) and C87r(μ) at NLO in 1/NC , 2008, 0803.1567.
[53] A. Manohar,et al. Dispersion Relation Bounds for pi pi Scattering , 2008, 0801.3222.
[54] A. Pich,et al. Form-factors and current correlators : chiral couplings L r 10 ( μ ) and C r 87 ( μ ) at NLO in 1 / N C , 2008 .
[55] B. Grinstein,et al. Higgs-Higgs bound state due to new physics at a TeV , 2007, 0704.1505.
[56] R. Rattazzi,et al. The Strongly-Interacting Light Higgs , 2007, hep-ph/0703164.
[57] K. Kampf,et al. On different lagrangian formalisms for vector resonances within chiral perturbation theory , 2006, hep-ph/0608051.
[58] A. Pich,et al. Towards a determination of the chiral couplings at NLO in 1 / N C : L r 8 ( μ ) and C r 38 ( μ ) , 2007 .
[59] M. Pierini,et al. The unitarity triangle fit in the standard model and hadronic parameters from lattice QCD: a reappraisal after the measurements of Δms and BR(B→τντ) , 2006, hep-ph/0606167.
[60] Austria,et al. Towards a consistent estimate of the chiral low-energy constants , 2006, hep-ph/0603205.
[61] R. Rattazzi,et al. Causality, analyticity and an IR obstruction to UV completion , 2006, hep-th/0602178.
[62] J. Stern,et al. Lepton-number violation and right-handed neutrinos in Higgsless effective theories , 2005, hep-ph/0504277.
[63] A. Pich,et al. The Green function and SU(3) breaking in Kl3 decays , 2005, hep-ph/0503108.
[64] A. Pich,et al. The 〈 SPP 〉 Green Function and SU ( 3 ) Breaking in K l 3 Decays ∗ , 2005 .
[65] A. Pich,et al. Quantum Loops in the Resonance Chiral Theory: The Vector Form Factor , 2004, hep-ph/0407240.
[66] Caltech,et al. Green function in the resonance region , 2004, hep-ph/0404004.
[67] A. Pich,et al. Odd-intrinsic-parity processes within the resonance effective theory of QCD , 2003, hep-ph/0306157.
[68] K. Yamawaki,et al. Hidden Local Symmetry at Loop -- A New Perspective of Composite Gauge Boson and Chiral Phase Transition -- , 2003, hep-ph/0302103.
[69] G. D’Ambrosio,et al. Minimal flavour violation: an effective field theory approach , 2002, hep-ph/0207036.
[70] A. Pich. Colourless Mesons in a Polychromatic World , 2002, hep-ph/0205030.
[71] L. Girlanda,et al. The anomalous chiral Lagrangian of order $p^6$ , 2001, hep-ph/0110400.
[72] D. Espriu,et al. CP violation and family mixing in the effective electroweak Lagrangian , 2000, hep-ph/0011036.
[73] J. Santiago,et al. Observable contributions of new exotic quarks to quark mixing , 2000, hep-ph/0007316.
[74] A. Pich,et al. Electromagnetism in nonleptonic weak interactions , 2000, hep-ph/0006172.
[75] G. Colangelo,et al. Renormalization of chiral perturbation theory to order p**6 , 1999, hep-ph/9907333.
[76] G. Colangelo,et al. The mesonic chiral lagrangean of order p 6 , 1999, hep-ph/9902437.
[77] E. Bagan,et al. Effective electroweak chiral Lagrangian: The matter sector , 1998, hep-ph/9809237.
[78] A. Pich. Effective field theory: Course , 1998 .
[79] J. Bijnens,et al. On the tensor formulation of effective vector lagrangians and duality transformations , 1995, hep-ph/9510338.
[80] J. Latorre,et al. Constraints on chiral perturbation theory parameters from QCD inequalities , 1995, hep-ph/9507258.
[81] A. Pich,et al. Chiral perturbation theory , 1995, hep-ph/9502366.
[82] M. Pennington,et al. The chiral lagrangian parameters, , , are determined by the ϱ-resonance , 1995 .
[83] J. Bijnens,et al. Chiral perturbation theory , 1999, hep-ph/9912548.
[84] Res Urech,et al. Virtual photons in chiral perturbation theory , 1994, hep-ph/9405341.
[85] M. Pennington,et al. The Chiral Lagrangian parameters, $\overline{\ell}_1$, $\overline{\ell}_2$, are determined by the $\rho$--resonance , 1994, hep-ph/9409426.
[86] M. Bilenky,et al. One-loop effective lagrangian for an extension of the standard model with a heavy charged scalar singlet , 1993, Nuclear Physics B.
[87] M. Herrero,et al. The Electroweak chiral Lagrangian for the Standard Model with a heavy Higgs , 1993, hep-ph/9308276.
[88] A. Deandrea,et al. The extended BESS model: bounds from precision electroweak measurements☆ , 1992, hep-ph/9209290.
[89] Howard Georgi,et al. Effective Field Theory , 1993 .
[90] K. Yamawaki,et al. Hidden local symmetry at one loop , 1992, hep-ph/9210208.
[91] Takeuchi,et al. Estimation of oblique electroweak corrections. , 1992, Physical review. D, Particles and fields.
[92] Takeuchi,et al. New constraint on a strongly interacting Higgs sector. , 1990, Physical review letters.
[93] A. Pich,et al. The Role of Resonances in Chiral Perturbation Theory , 1989 .
[94] A. Pich,et al. Chiral lagrangians for massive spin-1 fields , 1989 .
[95] R. Gatto,et al. Vector and Axial-Vector Bound States from a Strongly Interacting Electroweak Sector , 1989 .
[96] K. Yamawaki,et al. Nonlinear Realization and Hidden Local Symmetries , 1988 .
[97] U. Meissner. Low-energy hadron physics from effective chiral Lagrangians with vector mesons , 1988 .
[98] D. Wyler,et al. Effective lagrangian analysis of new interactions and flavour conservation , 1986 .
[99] Pham,et al. Evaluation of the derivative quartic terms of the meson chiral Lagrangian from forward dispersion relations. , 1985, Physical review. D, Particles and fields.
[100] R. Gatto,et al. Effective weak interaction theory with a possible new vector resonance from a strong higgs sector , 1985 .
[101] Hauser,et al. Breaking of isospin symmetry in theories with a dynamical Higgs mechanism. , 1985, Physical review. D, Particles and fields.
[102] Uehara,et al. Is the rho meson a dynamical gauge boson of hidden local symmetry? , 1985, Physical review letters.
[103] Heinrich Leutwyler,et al. Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark , 1985 .
[104] H. Leutwyler,et al. Low-energy expansion of meson form factors , 1985 .
[105] H. Leutwyler,et al. η → 3π to one loop☆ , 1985 .
[106] Heinrich Leutwyler,et al. Chiral perturbation theory to one loop , 1984 .
[107] H. Georgi,et al. Chiral quarks and the non-relativistic quark model , 1984 .
[108] A. C. Longhitano. Low-energy impact of a heavy Higgs boson sector , 1981 .
[109] S. Drell,et al. Summary Talk* , 1981 .
[110] L. F. Abbott,et al. Effective Hamiltonian for nucleon decay , 1980 .
[111] Leonard Susskind,et al. Isospin breaking in technicolor models , 1980 .
[112] A. C. Longhitano. Heavy Higgs bosons in the Weinberg-Salam model , 1980 .
[113] T. Appelquist,et al. Strongly interacting Higgs bosons , 1980 .
[114] Steven Weinberg,et al. Baryon and Lepton Nonconserving Processes , 1979 .
[115] F. Wilczek,et al. Operator Analysis of Nucleon Decay , 1979 .
[116] G. Senjanovic,et al. Exact Left-Right Symmetry and Spontaneous Violation of Parity , 1975 .
[117] A. Duncan,et al. Exact Spectral Function Sum Rules , 1975 .
[118] W. E. Kock,et al. Holography , 1971, Science.
[119] Julius Wess,et al. STRUCTURE OF PHENOMENOLOGICAL LAGRANGIANS. II. , 1969 .
[120] S. Weinberg. Precise Relations between the Spectra of Vector and Axial-Vector Mesons , 1967 .
[121] J. A. Schouten. Tensor analysis for physicists , 1955 .
[122] Illtyd Trethowan. Causality , 1938 .