Shortest path set induced vertex ordering and its application to distributed distance optimal formation path planning and control on graphs

For the task of moving a group of indistinguishable agents on a connected graph with unit edge lengths into an arbitrary goal formation, it was shown that distance optimal paths can be computed to complete with a tight convergence time guarantee [30], using a fully centralized algorithm. In this study, we establish the existence of a more fundamental ordering of the vertices on the underlying graph network, induced by a fixed goal formation. The ordering leads to a simple distributed scheduling algorithm that assures the same convergence time. The vertex ordering also readily extends to more general graphs - those with arbitrary integer capacities and edge lengths - for which we again provide guarantees on the convergence time until the desired formation is achieved. Simulations, accessible via a web browser, confirm our theoretical developments.

[1]  Seth Hutchinson,et al.  Path planning for permutation-invariant multirobot formations , 2005, IEEE Transactions on Robotics.

[2]  Brian D. O. Anderson,et al.  The Multi-Agent Rendezvous Problem. Part 1: The Synchronous Case , 2007, SIAM J. Control. Optim..

[3]  Brian D. O. Anderson,et al.  The Multi-Agent Rendezvous Problem. Part 2: The Asynchronous Case , 2007, SIAM J. Control. Optim..

[4]  Srinivas Akella,et al.  Coordinating Multiple Robots with Kinodynamic Constraints Along Specified Paths , 2005, Int. J. Robotics Res..

[5]  Yi Guo,et al.  A distributed and optimal motion planning approach for multiple mobile robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[6]  Mireille E. Broucke,et al.  Curve Shortening and the Rendezvous Problem for Mobile Autonomous Robots , 2006, IEEE Transactions on Automatic Control.

[7]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[8]  T. Murphey,et al.  Switching Rules for Decentralized Control with Simple Control Laws , 2007, 2007 American Control Conference.

[9]  Sonia Martínez,et al.  Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions , 2006, IEEE Transactions on Automatic Control.

[10]  Dylan A. Shell,et al.  Large-scale multi-robot task allocation via dynamic partitioning and distribution , 2012, Auton. Robots.

[11]  Mark H. Overmars,et al.  Coordinated path planning for multiple robots , 1998, Robotics Auton. Syst..

[12]  Magnus Egerstedt,et al.  Graph-theoretic connectivity control of mobile robot networks , 2011, Proceedings of the IEEE.

[13]  Magnus Egerstedt,et al.  Automatic Generation of Persistent Formations for Multi-agent Networks Under Range Constraints , 2009, Mob. Networks Appl..

[14]  Dinesh Manocha,et al.  Centralized path planning for multiple robots: Optimal decoupling into sequential plans , 2009, Robotics: Science and Systems.

[15]  Damjan Miklic,et al.  A discrete grid abstraction for formation control in the presence of obstacles , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[17]  Dylan A. Shell,et al.  Tunable routing solutions for multi-robot navigation via the assignment problem: A 3D representation of the matching graph , 2012, 2012 IEEE International Conference on Robotics and Automation.

[18]  Steven M. LaValle,et al.  Distance optimal formation control on graphs with a tight convergence time guarantee , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[19]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[20]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[21]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[22]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[23]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[24]  Mireille E. Broucke,et al.  Local control strategies for groups of mobile autonomous agents , 2004, IEEE Transactions on Automatic Control.

[25]  Masafumi Yamashita,et al.  Distributed memoryless point convergence algorithm for mobile robots with limited visibility , 1999, IEEE Trans. Robotics Autom..

[26]  Tomás Lozano-Pérez,et al.  Deadlock-free and collision-free coordination of two robot manipulators , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[27]  Randal W. Beard,et al.  Consensus seeking in multiagent systems under dynamically changing interaction topologies , 2005, IEEE Transactions on Automatic Control.

[28]  Claire J. Tomlin,et al.  Multi-agent avoidance control using an m-matrix property , 2005 .

[29]  Veysel Gazi,et al.  Stability of an Asynchronous Swarm With Time-Dependent Communication Links , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[30]  Daniel Liberzon,et al.  Rendezvous without coordinates , 2008, 2008 47th IEEE Conference on Decision and Control.

[31]  Vijay Kumar,et al.  Leader-to-formation stability , 2004, IEEE Transactions on Robotics and Automation.

[32]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.